Evans, K., Franco, J. & De Scurrah, M. M. Distribution of species of potato cyst-nematodes in South America. Nematologica 21, 365–369. https://doi.org/10.1163/187529275×00103 (1975).
Google Scholar
Plantard, O. et al. Origin and genetic diversity of Western European populations of the potato cyst nematode (Globodera pallida) inferred from mitochondrial sequences and microsatellite loci. Mol. Ecol. 17, 2208–2218. https://doi.org/10.1111/j.1365-294X.2008.03718.x (2008).
Google Scholar
Price, J. A., Coyne, D., Blok, V. C. & Jones, J. T. Potato cyst nematodes Globodera rostochiensis and G. pallida. Mol. Plant Pathol. 22, 495–507. https://doi.org/10.1111/mpp.13047 (2021).
Google Scholar
CABI. Globodera rostochiensis (yellow potato cyst nematode). https://www.cabi.org/isc/datasheet/27034 (2021).
CABI. Globodera pallida (white potato cyst nematode). https://www.cabi.org/isc/datasheet/27033 (2021).
Ruthes, A. C. & Dahlin, P. The impact of management strategies on the development and status of potato cyst nematode populations in Switzerland: An overview from 1958 to present. Plant Dis. 106, 1096–1104. https://doi.org/10.1094/pdis-04-21-0800-sr (2021).
Google Scholar
Minnis, S. T. et al. Potato cyst nematodes in England and Wales—Occurrence and distribution. Ann. Appl. Biol. 140, 187–195. https://doi.org/10.1111/j.1744-7348.2002.tb00172.x (2002).
Google Scholar
Djebroune, A. et al. Integrative morphometric and molecular approach to update the impact and distribution of potato cyst nematodes Globodera rostochiensis and Globodera pallida (Tylenchida: Heteroderidae) in Algeria. Pathogens 10, 216. https://doi.org/10.3390/pathogens10020216 (2021).
Google Scholar
Vallejo, D. et al. Occurrence and molecular characterization of cyst nematode species (Globodera spp.) associated with potato crops in Colombia. PLoS One 16, e0241256. https://doi.org/10.1371/journal.pone.0241256 (2021).
Google Scholar
Hajjaji, A., Mhand, R. A., Rhallabi, N. & Mellouki, F. First report of morphological and molecular characterization of Moroccan populations of Globodera pallida. J. Nematol. 53, e2021-07. https://doi.org/10.21307/jofnem-2021-007 (2021).
Google Scholar
Camacho, M. J. et al. Potato cyst nematodes: Geographical distribution, phylogenetic relationships and integrated pest management outcomes in Portugal. Front. Plant Sci. 11, 9. https://doi.org/10.3389/fpls.2020.606178 (2020).
Google Scholar
Handayani, N. D. et al. Distribution, DNA barcoding and genetic diversity of potato cyst nematodes in Indonesia. Eur. J. Plant Pathol. 158, 363–380. https://doi.org/10.1007/s10658-020-02078-7 (2020).
Google Scholar
Bairwa, A. et al. Morphological and molecular characterization of potato cyst nematode populations from the Nilgiris. Indian J. Agric. Sci. 90, 273–278 (2020).
Google Scholar
Mburu, H. et al. Potato cyst nematodes: A new threat to potato production in East Africa. Front. Plant Sci. 11, 13. https://doi.org/10.3389/fpls.2020.00670 (2020).
Google Scholar
Altas, A., Evlice, E., Ozer, G., Dababat, A. & Imren, M. Identification, distribution and genetic diversity of Globodera rostochiensis (Wollenweber, 1923) Skarbilovich, 1959 (Tylenchida: Heteroderidae) populations in Turkey. Turk. Entomol. Derg. Turk. J. Entomol. 44, 385–397. https://doi.org/10.16970/entoted.740223 (2020).
Google Scholar
Dandurand, L.-M., Zasada, I. A., Wang, X. & Mimee, B. Current status of potato cyst nematodes in North America. Annu. Rev. Phytopathol. 57, 117–133. https://doi.org/10.1146/annurev-phyto-082718-100254 (2019).
Google Scholar
Blacket, M. J. et al. Molecular assessment of the introduction and spread of potato cyst nematode, Globodera rostochiensis, in Victoria, Australia. Phytopathology 109, 659–669. https://doi.org/10.1094/phyto-06-18-0206-r (2019).
Google Scholar
Sullivan, M. J., Inserra, R. N., Franco, J., Moreno-Leheude, I. & Greco, N. Potato cyst nematodes: Plant host status and their regulatory impact. Nematropica 37, 193–201 (2007).
Hodda, M. & Cook, D. C. Economic impact from unrestricted spread of potato cyst nematodes in Australia. Phytopathology 99, 1387–1393. https://doi.org/10.1094/phyto-99-12-1387 (2009).
Google Scholar
Koirala, S., Watson, P., McIntosh, C. S. & Dandurand, L. M. Economic impact of Globodera pallida on the Idaho economy. Am. J. Potato Res. 97, 214–220. https://doi.org/10.1007/s12230-020-09768-2 (2020).
Google Scholar
Trudgill, D. L., Elliott, M. J., Evans, K. & Phillips, M. S. The white potato cyst nematode (Globodera pallida)—A critical analysis of the threat in Britain. Ann. Appl. Biol. 143, 73–80. https://doi.org/10.1111/j.1744-7348.2003.tb00271.x (2003).
Google Scholar
Duan, Y. X. Plant Nematology (Science Press, 2011).
Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. https://doi.org/10.5194/hess-11-1633-2007 (2007).
Google Scholar
Li, J. Suitable Risk Assessment for Six Potential Invasive Nematodes in China, Master thesis (Jilin Agriculture University, 2008).
Contina, J. B., Dandurand, L. M. & Knudsen, G. R. A spatiotemporal analysis and dispersal patterns of the potato cyst nematode Globodera pallida in Idaho. Phytopathology 110, 379–392. https://doi.org/10.1094/phyto-04-19-0113-r (2020).
Google Scholar
Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models with Applications in R (Cambridge University Press, 2017). https://doi.org/10.1017/9781139028271.
Google Scholar
Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning 83. https://doi.org/10.1145/1015330.1015412 (Association for Computing Machinery, 2004).
Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).
Google Scholar
Wan, J. et al. Predicting the potential geographic distribution of Bactrocera bryoniae and Bactrocera neohumeralis (Diptera: Tephritidae) in China using MaxEnt ecological niche modeling. J. Integr. Agric. 19, 2072–2082. https://doi.org/10.1016/S2095-3119(19)62840-6 (2020).
Google Scholar
Midmore, D. J. Potato production in the tropics. In The Potato Crop: The Scientific Basis for Improvement 728–793 (Springer Netherlands, 1992).
Google Scholar
Naika, S., de Jeude, J. V. L., de Goffau, M., Hilmi, M. & van Dam, B. Cultivation of Tomato: Production, Processing and Marketing (Digigrafi, 2005).
Chapman, M. A. Eggplant breeding and improvement for future climates. In Genomic Designing of Climate-Smart Vegetable Crops 257–276 (Springer, 2020).
Google Scholar
Management, D. o. C. List of National Agricultural Plant Quarantine Pests Distribution Administrative Areas. https://www.moa.gov.cn/nybgb/2019/201906/201907/t20190701_6320036.htm (Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2021).
Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).
Google Scholar
Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).
Google Scholar
Foot, M. A. The Ecology of Globodera pallida (Stone) Mulvey & Stone (Nematoda, Heteroderidae) at Pukekohe, New Zealand, Doctoral thesis (The University of Auckland, 1978).
Phillips, S. J., Dudík, M., & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.1) [Internet]. http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 24-10-2020.
Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).
Google Scholar
Wan, J., Wang, R., Ren, Y. & McKirdy, S. Potential distribution and the risks of Bactericera cockerelli and its associated plant pathogen Candidatus Liberibacter solanacearum for global potato production. Insects 11, 298. https://doi.org/10.3390/insects11050298 (2020).
Google Scholar
Cobos, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281. https://doi.org/10.7717/peerj.6281 (2019).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 30-10-2020.
Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008 (2008).
Google Scholar
Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. https://doi.org/10.1890/10-1171.1 (2011).
Google Scholar
ESRI. ArcGIS Desktop: Release 10 (Version 10.4.1) (Environmental Systems Research Institute). Accessed 24-10-2020.
Kong, W., Li, X. & Zou, H. Optimizing MaxEnt model in the prediction of species distribution. J. Appl. Ecol. 30, 2116–2128. https://doi.org/10.13287/j.1001-9332.201906.029 (2019).
Google Scholar
Fischer, G. et al. Global Agro-ecological Zones (GAEZ v3.0). http://pure.iiasa.ac.at/id/eprint/13290/ (2012).
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).
Google Scholar
da Silva, J. C. P., de Medeiros, F. H. V. & Campos, V. P. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Sci. Technol. 28, 423–445. https://doi.org/10.1080/09583157.2018.1460316 (2018).
Google Scholar
Kim, E., Seo, Y., Kim, Y. S., Park, Y. & Kim, Y. H. Effects of soil textures on infectivity of root-knot nematodes on carrot. Plant Pathol. J. 33, 66–74. https://doi.org/10.5423/ppj.Oa.07.2016.0155 (2017).
Google Scholar
Duyck, P.-F. et al. Niche partitioning based on soil type and climate at the landscape scale in a community of plant-feeding nematodes. Soil Biol. Biochem. 44, 49–55. https://doi.org/10.1016/j.soilbio.2011.09.014 (2012).
Google Scholar
Stanton, J. C., Pearson, R. G., Horning, N., Ersts, P. & ReşitAkçakaya, H. Combining static and dynamic variables in species distribution models under climate change. Methods Ecol. Evol. 3, 349–357. https://doi.org/10.1111/j.2041-210X.2011.00157.x (2012).
Google Scholar
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).
Google Scholar
Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304. https://doi.org/10.1177/0049124104268644 (2004).
Google Scholar
Din, A. U. et al. The impact of COVID-19 on the food supply chain and the role of e-commerce for food purchasing. Sustainability 14, 3074. https://doi.org/10.3390/su14053074 (2022).
Google Scholar
Lang, T. & McKee, M. The reinvasion of Ukraine threatens global food supplies. BMJ https://doi.org/10.1136/bmj.o676,o676,10.1136/bmj.o676 (2022).
Google Scholar
Hijmans, R. J. Global distribution of the potato crop. Am. J. Potato Res. 78, 403–412. https://doi.org/10.1007/bf02896371 (2001).
Google Scholar
Motti, R. The Solanaceae family: Botanical features and diversity. In The Wild Solanums Genomes 1–9 (Springer International Publishing, 2021).
Chytrý, M. et al. Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Glob. Ecol. Biogeogr. 21, 75–87. https://doi.org/10.1111/j.1466-8238.2010.00573.x (2012).
Google Scholar
Lin, W., Cheng, X. & Xu, R. Impact of different economic factors on biological invasions on the global scale. PLoS One 6, e18797. https://doi.org/10.1371/journal.pone.0018797 (2011).
Google Scholar
Jones, L. M. et al. Climate change is predicted to alter the current pest status of Globodera pallida and G. rostochiensis in the United Kingdom. Glob. Change Biol. 23, 4497–4507. https://doi.org/10.1111/gcb.13676 (2017).
Google Scholar
Kaczmarek, A., MacKenzie, K., Kettle, H. & Blok, V. C. Influence of soil temperature on Globodera rostochiensis and Globodera pallida. Phytopathol. Mediterr. 53, 396–405. https://doi.org/10.14601/Phytopathol_Mediterr-13512 (2014).
Google Scholar
Hearne, R., Lettice, E. P. & Jones, P. W. Interspecific and intraspecific competition in the potato cyst nematodes Globodera pallida and G. rostochiensis. Nematology 19, 463–475. https://doi.org/10.1163/15685411-00003061 (2017).
Google Scholar
Skelsey, P., Kettle, H., Mackenzie, K. & Blok, V. Potential impacts of climate change on the threat of potato cyst nematode species in Great Britain. Plant. Pathol. 67, 909–919. https://doi.org/10.1111/ppa.12807 (2018).
Google Scholar
Carlton, J. & Ruiz, G. M. Invasive Species: Vectors and Management Strategies (Island Press, 2003).
Singh, S. K., Paini, D. R., Ash, G. J. & Hodda, M. Prioritising plant-parasitic nematode species biosecurity risks using self organising maps. Biol. Invasions 16, 1515–1530. https://doi.org/10.1007/s10530-013-0588-7 (2014).
Google Scholar
Jiang, D., Chen, S., Hao, M. M., Fu, J. Y. & Ding, F. Y. Mapping the Potential global codling moth (Cydia pomonella L.) distribution based on a machine learning method. Sci. Rep. 8, 8. https://doi.org/10.1038/s41598-018-31478-3 (2018).
Google Scholar
Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66. https://doi.org/10.1016/j.tree.2012.07.013 (2013).
Google Scholar
Ravichandra, N. Nematodes of quarantine importance. In Horticultural Nematology 369–385 (Springer, 2014).
Source: Ecology - nature.com