in

Evolution of self-organised division of labour driven by stigmergy in leaf-cutter ants

  • Wilson, E. O. Success and dominance in ecosystems: the case of the social insects. Vol. 2 I-XXI (Ecology Institute, 1990).

  • Anderson, C., Franks, N. R. & McShea, D. W. The complexity and hierarchical structure of tasks in insect societies. Anim. Behav. 62, 643–651. https://doi.org/10.1006/anbe.2001.1795 (2001).

    Article 

    Google Scholar 

  • Theraulaz, G. & Deneubourg, J.-L. in The Ethological roots of Culture (eds Gardner RA, Chiarelli AB, Gardner BT, & Ploojd FX) 1–19 (Kluwer Academic Publishers, 1994).

  • Theraulaz, G. & Bonabeau, E. Modelling the collective building of complex architectures in social insects with lattice swarms. J. Theor. Biol. 177, 381–400. https://doi.org/10.1006/jtbi.1995.0255 (1995).

    Article 
    ADS 

    Google Scholar 

  • Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12, 188–193 (1997).

    Article 

    Google Scholar 

  • Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).

    Article 
    ADS 

    Google Scholar 

  • Gordon, D. M. The evolution of the algorithms for collective behavior. Cell Syst. 3, 514–520 (2016).

    Article 

    Google Scholar 

  • Grüter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. PLoS ONE 7, e44501. https://doi.org/10.1371/journal.pone.0044501 (2012).

    Article 
    ADS 

    Google Scholar 

  • Wehner, R., Harkness, R. D. & Schmid-Hempel, P. Foraging Strategies in Individually Searching Ants. (Fischer, 1983).

  • Oster, G. F. & Wilson, E. O. Caste and Ecology in the Social Insects. (Princeton University Press, 1978).

  • Anderson, C. & Franks, N. R. Teams in animal societies. Behav. Ecol. 12, 534–540. https://doi.org/10.1093/beheco/12.5.534 (2001).

    Article 

    Google Scholar 

  • Jeanne, R. L. The evolution of the organization of work in social insects. Monitore Zool. Italiano-Ital. J. Zool. 20, 119–133. https://doi.org/10.1080/00269786.1986.10736494 (1986).

    Article 

    Google Scholar 

  • Ratnieks, F. L. & Anderson, C. Task partitioning in insects societies. Insectes Soc. 46, 95–108 (1999).

    Article 

    Google Scholar 

  • Anderson, C., Boomsma, J. J. & Bartholdi, J. J. Task partitioning in insect societies: bucket brigades. Insectes Soc. 49, 171–180. https://doi.org/10.1007/s00040-002-8298-7 (2002).

    Article 

    Google Scholar 

  • Jeanson, R. & Weidenmüller, A. Interindividual variability in social insects–proximate causes and ultimate consequences. Biol. Rev. 89, 671–687 (2014).

    Article 

    Google Scholar 

  • Leighton, G. M., Charbonneau, D. & Dornhaus, A. Task switching is associated with temporal delays in Temnothorax rugatulus ants. Behav. Ecol. 28, 319–327. https://doi.org/10.1093/beheco/arw162 (2017).

    Article 

    Google Scholar 

  • Grassé, P.-P. La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Soc. 6, 41–80 (1959).

    Article 

    Google Scholar 

  • Theraulaz, G. & Bonabeau, E. A brief history of stigmergy. Artif. Life 5, 97–116. https://doi.org/10.1162/106454699568700 (1999).

    Article 

    Google Scholar 

  • Karsai, I. Decentralized control of construction behavior in paper wasps: an overview of the stigmergy approach. Artif. Life 5, 117–136. https://doi.org/10.1162/106454699568719 (1999).

    Article 

    Google Scholar 

  • Karsai, I. & Penzes, Z. Comb Building in Social Wasps – Self-Organization and Stigmergic Script. J. Theor. Biol. 161, 505–525. https://doi.org/10.1006/jtbi.1993.1070 (1993).

    Article 
    ADS 

    Google Scholar 

  • Dorigo, M., Bonabeau, E. & Theraulaz, G. Ant algorithms and stigmergy. Fut. Gen. Comput. Syst. 16, 851–871 (2000).

    Article 

    Google Scholar 

  • Camazine, S. Self-organizing pattern-formation on the combs of Honey-Bee Colonies. Behav. Ecol. Sociobiol. 28, 61–76. https://doi.org/10.1007/bf00172140 (1991).

    Article 

    Google Scholar 

  • Camazine, S., Sneyd, J., Jenkins, M. J. & Murray, J. D. A Mathematical-model of self-organized pattern-formation on the combs of Honeybee Colonies. J. Theor. Biol. 147, 553–571. https://doi.org/10.1016/S0022-5193(05)80264-4 (1990).

    Article 
    ADS 

    Google Scholar 

  • Deneubourg, J.-L. et al. in Simulation of Adaptive Behavior: From Animals to Animats (eds J.A. Meyer & S.W. Wilson) 356–365 (The MIT Press/Bradford Books, 1991).

  • Franks, N. R. & Sendovafranks, A. B. Brood Sorting by Ants – Distributing the Workload over the Work-Surface. Behav. Ecol. Sociobiol. 30, 109–123 (1992).

    Article 

    Google Scholar 

  • Sendova-Franks, A. B., Scholes, S. R., Franks, N. R. & Melhuish, C. Brood sorting by ants: two phases and differential diffusion. Anim. Behav. 68, 1095–1106. https://doi.org/10.1016/j.anbehav.2004.02.013 (2004).

    Article 

    Google Scholar 

  • Lan, T., Liu, S. & Yang, S. X. in 2006 6th World Congress on Intelligent Control and Automation. 441–445 (IEEE).

  • Renucci, M., Tirard, A. & Provost, E. Complex undertaking behavior in Temnothorax lichtensteini ant colonies: from corpse-burying behavior to necrophoric behavior. Insectes Soc. 58, 9–16 (2011).

    Article 

    Google Scholar 

  • Detrain, C. & Deneubourg, J. L. Collective decision-making and foraging patterns in Ants and Honeybees. Advances in Insect Physiology 35(35), 123–173. https://doi.org/10.1016/S0065-2806(08)00002-7 (2008).

    Article 

    Google Scholar 

  • Couzin, I. D. & Franks, N. R. Self-organized lane formation and optimized traffic flow in army ants. Proc Biol Sci 270, 139–146. https://doi.org/10.1098/rspb.2002.2210 (2003).

    Article 

    Google Scholar 

  • Gulyas, L., Laufer, L. & Szabo, R. in International Workshop on Engineering Self-Organising Applications 50–65 (Springer).

  • Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529. https://doi.org/10.1007/s00265-004-0824-3 (2004).

    Article 

    Google Scholar 

  • Oberst, S. et al. Revisiting stigmergy in light of multi-functional, biogenic, termite structures as communication channel. Comput. Struct. Biotechnol. J. 18, 2522–2534 (2020).

    Article 

    Google Scholar 

  • Hart, A., Anderson, C. & Ratnieks, F. Task partitioning in leafcutting ants. Acta Ethologica 5, 1–11. https://doi.org/10.1007/s10211-002-0062-5 (2002).

    Article 

    Google Scholar 

  • Hart, A. G. & Ratnieks, F. L. Leaf caching in the leafcutting ant Atta colombica: organizational shift, task partitioning and making the best of a bad job. Anim. Behav. 62, 227–234 (2001).

    Article 

    Google Scholar 

  • Röschard, J. & Roces, F. Sequential load transport in grass-cutting ants (Atta vollenweideri): maximization of plant delivery rate or improved information transfer? Psyche 2011 (2011).

  • Nickele, M. A., Reis Filho, W. & Pie, M. R. Sequential load transport during foraging in Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Myrmecol News 21, 73–82 (2015).

  • Ferrante, E., Turgut, A. E., Duenez-Guzman, E., Dorigo, M. & Wenseleers, T. Evolution of Self-Organized Task Specialization in Robot Swarms. PLoS Comp. Biol. 11, e1004273. https://doi.org/10.1371/journal.pcbi.1004273 (2015).

    Article 
    ADS 

    Google Scholar 

  • Grueter, C. et al. Negative feedback enables fast and flexible collective decision-making in ants. (2012).

  • Holcombe, M. et al. Modelling complex biological systems using an agent-based approach. Integr. Biol. 4, 53–64 (2012).

    Article 

    Google Scholar 

  • Fourcassié, V., Dussutour, A. & Deneubourg, J.-L. Ant traffic rules. J. Exp. Biol. 213, 2357–2363 (2010).

    Article 

    Google Scholar 

  • Modlmeier, A. P., Keiser, C. N., Shearer, T. A. & Pruitt, J. N. Species-specific influence of group composition on collective behaviors in ants. Behav. Ecol. Sociobiol. 68, 1929–1937 (2014).

    Article 

    Google Scholar 

  • Modlmeier, A. P., Liebmann, J. E. & Foitzik, S. Diverse societies are more productive: a lesson from ants. Proc. R. Soc. B 279, 2142–2150 (2012).

    Article 

    Google Scholar 

  • Walsh, J. T., Garnier, S. & Linksvayer, T. A. Ant collective behavior is heritable and shaped by selection. Am. Nat. 196, 541–554 (2020).

    Article 

    Google Scholar 

  • Tannenbaum, E. When does division of labor lead to increased system output?. J. Theor. Biol. 247, 413–425 (2007).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Wahl, L. M. Evolving the division of labour: Generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Wakano, J., Nakata, K. & Yamamura, N. Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J. Theor. Biol. 193, 153–165 (1998).

    Article 
    ADS 

    Google Scholar 

  • Goldsby, H. J., Dornhaus, A., Kerr, B. & Ofria, C. Task-switching costs promote the evolution of division of labor and shifts in individuality. Proc. Natl. Acad. Sci. 109, 13686–13691 (2012).

    Article 
    ADS 

    Google Scholar 

  • Rueffler, C., Hermisson, J. & Wagner, G. P. Evolution of functional specialization and division of labor. Proc. Natl. Acad. Sci. 109, E326–E335 (2012).

    Article 
    ADS 

    Google Scholar 

  • Lopes, J. F., Forti, L. C., Camargo, R. S., Matos, C. A. & Verza, S. S. The effect of trail length on task partitioning in three Acromyrmex species (Hymenoptera: Formicidae). Sociobiology 42, 87–92 (2003).

    Google Scholar 

  • Duarte, A., Weissing, F. J., Pen, I. & Keller, L. An evolutionary perspective on self-organized division of labor in social insects. Annu. Rev. Ecol. Evol. Syst. 42(42), 91–110. https://doi.org/10.1146/annurev-ecolsys-102710-145017 (2011).

    Article 

    Google Scholar 

  • Duarte, A., Pen, I., Keller, L. & Weissing, F. J. Evolution of self-organized division of labor in a response threshold model. Behav. Ecol. Sociobiol. 66, 947–957. https://doi.org/10.1007/s00265-012-1343-2 (2012).

    Article 

    Google Scholar 

  • Floreano, D. & Keller, L. Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biol. 8, e1000292 (2010).

    Article 

    Google Scholar 

  • Floreano, D., Mitri, S., Magnenat, S. & Keller, L. Evolutionary conditions for the emergence of communication in robots. Curr. Biol. 17, 514–519 (2007).

    Article 

    Google Scholar 

  • Mitri, S., Floreano, D. & Keller, L. The evolution of information suppression in communicating robots with conflicting interests. Proc. Natl. Acad. Sci. 106, 15786–15790 (2009).

    Article 
    ADS 

    Google Scholar 

  • Abiodun, O. I. et al. State-of-the-art in artificial neural network applications: A survey. Heliyon 4, e00938 (2018).

    Article 

    Google Scholar 

  • Dingemanse, N. J., Kazem, A. J., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).

    Article 

    Google Scholar 

  • Van den Berg, P. & Weissing, F. J. The importance of mechanisms for the evolution of cooperation. Proc. R. Soc. B 282, 20151382 (2015).

    Article 

    Google Scholar 

  • Wetterer, J. K. Ontogenetic changes in forager polymorphism and foraging ecology in the leaf-cutting ant Atta cephalotes. Oecologia 98, 235–238. https://doi.org/10.1007/BF00341478 (1994).

    Article 
    ADS 

    Google Scholar 

  • Wetterer, J. K. Forager size and ecology of Acromyrmex coronatus and other leaf-cutting ants in Costa Rica. Oecologia 104, 409–415. https://doi.org/10.1007/BF00341337 (1995).

    Article 
    ADS 

    Google Scholar 

  • Evison, S. E. F. & Hughes, W. O. Genetic caste polymorphism and the evolution of polyandry in Atta leaf-cutting ants. Naturwissenschaften 98, 643–649 (2011).

    Article 
    ADS 

    Google Scholar 

  • Hughes, W. O., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).

    Article 
    ADS 

    Google Scholar 

  • Villesen, P., Murakami, T., Schultz, T. R. & Boomsma, o. J. Identifying the transition between single and multiple mating of queens in fungus-growing ants. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 269, 1541–1548 (2002).

  • Mueller, U. G. & Rabeling, C. A breakthrough innovation in animal evolution. Proc. Natl. Acad. Sci. 105, 5287–5288 (2008).

    Article 
    ADS 

    Google Scholar 

  • Schultz, T. R. & Brady, S. G. Major evolutionary transitions in ant agriculture. Proc. Natl. Acad. Sci. 105, 5435–5440 (2008).

    Article 
    ADS 

    Google Scholar 

  • Fowler, H. G. Latitudinal gradients and diversity of the leaf-cutting ants (Atta and Acromyrmex)(Hymenoptera: Formicidae). Rev. Biol. Trop. 31, 213–216 (1983).

    Google Scholar 

  • Jackson, D. E. & Ratnieks, F. L. Communication in ants. Curr. Biol. 16, R570–R574 (2006).

    Article 

    Google Scholar 

  • Roces, F. & Hölldobler, B. Vibrational communication between hitchhikers and foragers in leaf-cutting ants (Atta cephalotes). Behav. Ecol. Sociobiol. 37, 297–302 (1995).

    Article 

    Google Scholar 

  • Hubbell, S. P., Johnson, L. K., Stanislav, E., Wilson, B. & Fowler, H. Foraging by bucket-brigade in leaf-cutter ants. Biotropica 1, 210–213 (1980).

    Article 

    Google Scholar 

  • Boi, S., Couzin, I. D., Buono, N. D., Franks, N. & Britton, N. Coupled oscillators and activity waves in ant colonies. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 371–378 (1999).

  • Cole, B. J. Short-term activity cycles in ants: generation of periodicity by worker interaction. Am. Nat. 137, 244–259 (1991).

    Article 

    Google Scholar 

  • Cornejo, A., Dornhaus, A., Lynch, N. & Nagpal, R. in International Symposium on Distributed Computing. 46–60 (Springer).

  • Franks, N. R., Bryant, S., Griffiths, R. & Hemerik, L. Synchronization of the behaviour within nests of the antleptothorax acervorum (fabricius)—I. Discovering the phenomenon and its relation to the level of starvation. Bull. Math. Biol. 52, 597–612 (1990).

  • Pagliara, R., Gordon, D. M. & Leonard, N. E. Regulation of harvester ant foraging as a closed-loop excitable system. PLoS Comp. Biol. 14, e1006200 (2018).

    Article 
    ADS 

    Google Scholar 

  • Schmickl, T. & Karsai, I. Integral feedback control is at the core of task allocation and resilience of insect societies. Proc. Natl. Acad. Sci. 115, 13180–13185 (2018).

    Article 
    ADS 

    Google Scholar 

  • Solé, R. V., Miramontes, O. & Goodwin, B. C. Oscillations and chaos in ant societies. J. Theor. Biol. 161, 343–357 (1993).

    Article 
    ADS 

    Google Scholar 

  • Gordon, D. M., Goodwin, B. C. & Trainor, L. E. A parallel distributed model of the behaviour of ant colonies. J. Theor. Biol. 156, 293–307 (1992).

    Article 
    ADS 

    Google Scholar 

  • Aoki, S. K. et al. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570, 533–537 (2019).

    Article 

    Google Scholar 

  • Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).

    Article 

    Google Scholar 

  • Niemeyer, N., Schleimer, J.-H. & Schreiber, S. Biophysical models of intrinsic homeostasis: Firing rates and beyond. Curr. Opin. Neurobiol. 70, 81–88 (2021).

    Article 

    Google Scholar 

  • Rombouts, J., Vandervelde, A. & Gelens, L. Delay models for the early embryonic cell cycle oscillator. PLoS ONE 13, e0194769 (2018).

    Article 

    Google Scholar 

  • Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003).

    Article 

    Google Scholar 

  • Bryant, B. D. & Miikkulainen, R. Foundations of Trusted Autonomy 87–115 (Springer, 2018).

    Google Scholar 

  • Masad, D. & Kazil, J. in 14th PYTHON in Science Conference. 53–60 (Citeseer).

  • Knaden, M. & Graham, P. The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu. Rev. Entomol. 61, 63–76 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Food for thought, thought for food

    Palau’s warmest reefs harbor thermally tolerant corals that thrive across different habitats