Schilling, A.-M. & Rössner, G. E. The (sleeping) beauty in the beast—a review on the water deer, Hydropotes inermis. Hystrix Ital. J. Mammal. 28, 121–133 (2017).
Geist, V. Deer of the World: Their Evolution, Behaviour and Ecology (Stackpole Books, Pennsylvania, 1998).
Cooke, A. Muntjac and Water Deer: Natural History, Environmental Impact and Management (Pelagic Publishing Ltd, UK, 2019).
Google Scholar
Kim, B. J., Lee, B. K. & Kim, Y. J. Korean water deer (National Institute of Ecology, South Korea, 2016).
Belyaev, D. A. & Jo, Y.-S. Northernmost finding and further information on water deer Hydropotes inermis in Primorskiy Krai, Russia. Mammalia 85, 71–73 (2021).
Google Scholar
Harris, R. B. & Duckworth, J. W. Hydropotes inermis. The IUCN Red List of Threatened Species, e.T10329A22163569 (2015).
National Institute of Biological Resources. Harmful wildlife. https://species.nibr.go.kr/home/mainHome.do?cont_link=011&subMenu=011016&contCd=011016001 (2015).
Hofmann, R. R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457 (1989).
Google Scholar
Guo, G. & Zhang, E. Diet of the Chinese water deer (Hydropotes inermis) in Zhoushan Archipelago, China. Acta Theriol. Sin. 25, 122–130 (2005).
Kim, B. J., Lee, N. S. & Lee, S. D. Feeding diets of the Korean water deer (Hydropotes inermis argyropus) based on a 202 bp rbcL sequence analysis. Conserv. Genet. 12, 851–856 (2011).
Google Scholar
Park, J.-E., Kim, B.-J., Oh, D.-H., Lee, H. & Lee, S.-D. Feeding habit analysis of the Korean water deer. Korean J. Environ. Ecol. 25, 836–845 (2011).
Kim, J., Joo, S. & Park, S. Diet composition of Korean water deer (Hydropotes inermis argyropus) from the Han River Estuary Wetland in Korea using fecal DNA. Mammalia 85, 487–493 (2021).
Google Scholar
Hofmann, R., Kock, R. A., Ludwig, J. & Axmacher, H. Seasonal changes in rumen papillary development and body condition in free ranging Chinese water deer (Hydropotes inermis). J. Zool. 216, 103–117 (1988).
Google Scholar
Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).
Google Scholar
Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Conserv. Physiol. 5, cox030 (2017).
Google Scholar
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).
Google Scholar
Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 11, 759–769 (2011).
Google Scholar
Nichols, R. V., Åkesson, M. & Kjellander, P. Diet assessment based on rumen contents: A comparison between DNA metabarcoding and macroscopy. PLoS ONE 11, e0157977 (2016).
Google Scholar
Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).
Google Scholar
Kumari, P. et al. DNA metabarcoding-based diet survey for the Eurasian otter (Lutra lutra): Development of a Eurasian otter-specific blocking oligonucleotide for 12S rRNA gene sequencing for vertebrates. PLoS ONE 14, e0226253 (2019).
Google Scholar
Iwanowicz, D. D. et al. Metabarcoding of fecal samples to determine herbivore diets: A case study of the endangered Pacific pocket mouse. PLoS ONE 11, e0165366 (2016).
Google Scholar
Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).
Google Scholar
Ford, M. J. et al. Estimation of a killer whale (Orcinus orca) population’s diet using sequencing analysis of DNA from feces. PLoS ONE 11, e0144956 (2016).
Google Scholar
Ando, H. et al. Diet analysis by next-generation sequencing indicates the frequent consumption of introduced plants by the critically endangered red-headed wood pigeon (Columba janthina nitens) in oceanic island habitats. Ecol. Evol. 3, 4057–4069 (2013).
Google Scholar
Kim, E.-K. Behavioral ecology, habitat evaluation and genetic characteristics of water deer (Hydropotes inermis) in Korea. Ph.D. thesis. Kangwon National University (2011).
Park, J.-E., Kim, B.-J. & Lee, S.-D. A study of potential of diet analysis in the Korean water deer (Hydropotes inermis argyropus) using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Korean J. Environ. Ecol. 24, 318–324 (2010).
Hollingsworth, P. M. Refining the DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 108, 19451–19452 (2011).
Google Scholar
Li, D.-Z. et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646 (2011).
Google Scholar
Park, E. & Nam, M. Changes in land cover and the cultivation area of ginseng in the Civilian Control Zone -Paju City and Yeoncheon County-. Korean J. Environ. Ecol. 27, 507–515 (2013).
Cheng, T. et al. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Resour. 16, 138–149 (2016).
Google Scholar
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
Google Scholar
Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J. & Förster, F. ITS2 database V: Twice as much. Mol. Biol. Evol. 32, 3030–3032 (2015).
Google Scholar
Sickel, W. et al. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 15, 20 (2015).
Google Scholar
Edgar, R. C. Accuracy of taxonomy prediction for 16S rRNA and fungal ITS sequences. PeerJ 6, e4652 (2018).
Google Scholar
Oksanen, J. et al. vegan: Community ecology package v 2.5–7 (R Foundation, Vienna, Austria, 2020).
Hsieh, T., Ma, K. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
De Cáceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574 (2009).
Google Scholar
Yan, L. ggvenn: Draw venn diagram by ‘ggplot2’ v. 0.1.8 (R Foundation, Vienna, Austria, 2021).
Choi, D.-Y. et al. Flora of province Gyonggi-do. Bull. Seoul Nat’l Univ. Arbor. 21, 25–76 (2001).
Ko, S. & Shin, Y. Flora of middle part in Gyeonggi Province. Korean J. Plant Res. 22, 49–70 (2009).
Lee, S.-K., Ryu, Y. & Lee, E. J. Endozoochorous seed dispersal by Korean water deer (Hydropotes inermis argyropus) in Taehwa Research Forest, South Korea. Glob. Ecol. Conserv. 40, e02325 (2022).
Google Scholar
Kim, K.-H. & Kang, S.-H. Flora of western civilian control zone (CCZ) in Korea. Korean J. Plant Res. 32, 565–588 (2019).
Gyeonggi Tourism Organization. Pyeonghwa-Nuri Trail ecological resource survey. (Paju City, Gyeonggi Province, Korea, 2018).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, New York, 2016).
Google Scholar
R Core Team. R: A language and environment for statistical computing (R Foundation, Vienna, Austria, 2020).
Pertoldi, C. et al. Comparing DNA metabarcoding with faecal analysis for diet determination of the Eurasian otter (Lutra lutra) in Vejlerne. Denmark. Mammal. Res. 66, 115–122 (2021).
Google Scholar
Lee, B. Morphological, ecological and DNA taxonomic characteristics of Chinese water deer (Hydropotes inermis Swinhoe). Ph.D. thesis. Chungbuk National University (2003).
Wilmshurst, J. F., Fryxell, J. M. & Hudsonb, R. J. Forage quality and patch choice by wapiti (Cervus elaphus). Behav. Ecol. 6, 209–217 (1995).
Google Scholar
Langvatn, R. & Hanley, T. A. Feeding-patch choice by red deer in relation to foraging efficiency. Oecologia 95, 164–170 (1993).
Google Scholar
Gray, P. B. & Servello, F. A. Energy intake relationships for white-tailed deer on winter browse diets. J. Wildl. Manag. 59, 147–152 (1995).
Google Scholar
Brown, D. T. & Doucet, G. J. Temporal changes in winter diet selection by white-tailed deer in a northern deer yard. J. Wildl. Manag. 55, 361–376 (1991).
Google Scholar
Takahashi, H. & Kaji, K. Fallen leaves and unpalatable plants as alternative foods for sika deer under food limitation. Ecol. Res. 16, 257–262 (2001).
Google Scholar
Bee, J. N. et al. Spatio-temporal feeding selection of red deer in a mountainous landscape. Austral Ecol. 35, 752–764 (2010).
Google Scholar
Gebert, C. & Verheyden-Tixier, H. Variations of diet composition of red deer (Cervus elaphus L.) in Europe. Mammal. Rev. 31, 189–201 (2001).
Google Scholar
Cornelis, J., Casaer, J. & Hermy, M. Impact of season, habitat and research techniques on diet composition of roe deer (Capreolus capreolus): a review. J. Zool. 248, 195–207 (1999).
Google Scholar
Kim, B. J. & Lee, S.-D. Home range study of the Korean water deer (Hydropotes inermis agyropus) using radio and GPS tracking in South Korea: Comparison of daily and seasonal habitat use pattern. J. Ecol. Field Biol. 34, 365–370 (2011).
Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329 (1987).
Google Scholar
Staines, B. W., Crisp, J. M. & Parish, T. Differences in the quality of food eaten by red deer (Cervus elaphus) stags and hinds in winter. J. Appl. Ecol. 19, 65–77 (1982).
Google Scholar
Koga, T. & Ono, Y. Sexual differences in foraging behavior of sika deer, Cervus nippon. J. Mammal. 75, 129–135 (1994).
Google Scholar
Han, S.-H., Lee, S.-S., Cho, I.-C., Oh, M.-Y. & Oh, H.-S. Species identification and sex determination of Korean water deer (Hydropotes inermis argyropus) by duplex PCR. J. Appl. Anim. Res. 35, 61–66 (2009).
Google Scholar
You, Z. et al. Seasonal variations in the composition and diversity of gut microbiota in white-lipped deer (Cervus albirostris). PeerJ 10, e13753 (2022).
Google Scholar
Zhao, W. et al. Metagenomics analysis of the gut microbiome in healthy and bacterial pneumonia forest musk deer. Gene Genom. 43, 43–53 (2021).
Google Scholar
Amato, K. R. et al. Gut microbiome, diet, and conservation of endangered langurs in Sri Lanka. Biotropica 52, 981–990 (2020).
Google Scholar
Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).
Google Scholar
Redford, K. H., Segre, J. A., Salafsky, N., del Rio, C. M. & McAloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).
Google Scholar
Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).
Google Scholar
Corse, E. et al. A from-benchtop-to-desktop workflow for validating HTS data and for taxonomic identification in diet metabarcoding studies. Mol. Ecol. Resour. 17, e146–e159 (2017).
Google Scholar
Alberdi, A. et al. Promises and pitfalls of using high-throughput sequencing for diet analysis. Mol. Ecol. Resour. 19, 327–348 (2019).
Google Scholar
Nakahara, F. et al. The applicability of DNA barcoding for dietary analysis of sika deer. DNA Barcodes 3, 200–206 (2015).
Google Scholar
Thomas, A. C., Jarman, S. N., Haman, K. H., Trites, A. W. & Deagle, B. E. Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias. Mol. Ecol. 23, 3706–3718 (2014).
Google Scholar
Deagle, B. E., Eveson, J. P. & Jarman, S. N. Quantification of damage in DNA recovered from highly degraded samples–a case study on DNA in faeces. Front. Zool. 3, 11 (2006).
Google Scholar
Coissac, E., Riaz, T. & Puillandre, N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21, 1834–1847 (2012).
Google Scholar
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
Google Scholar
Clare, E. L. Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157 (2014).
Google Scholar
Ramirez, R., Quintanilla, J. & Aranda, J. White-tailed deer food habits in northeastern Mexico. Small Rumin. Res. 25, 141–146 (1997).
Google Scholar
Anouk Simard, M., Côté, S. D., Weladji, R. B. & Huot, J. Feedback effects of chronic browsing on life-history traits of a large herbivore. J. Anim. Ecol. 77, 678–686 (2008).
Google Scholar
Putman, R. J. & Staines, B. W. Supplementary winter feeding of wild red deer Cervus elaphus in Europe and North America: justifications, feeding practice and effectiveness. Mammal Rev. 34, 285–306 (2004).
Google Scholar
Milner, J. M., Van Beest, F. M., Schmidt, K. T., Brook, R. K. & Storaas, T. To feed or not to feed? Evidence of the intended and unintended effects of feeding wild ungulates. J. Wildl. Manag. 78, 1322–1334 (2014).
Google Scholar
Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mammal Rev. 51, 95–108 (2021).
Google Scholar
Cappa, F., Lombardini, M. & Meriggi, A. Influence of seasonality, environmental and anthropic factors on crop damage by wild boar Sus scrofa. Folia Zool. 68, 261–268 (2019).
Google Scholar
Source: Ecology - nature.com