in

Maize and ancient Maya droughts

  • Evans, N. P. et al. Quantification of drought during the collapse of the classic Maya civilization. Science 361, 498–501 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gill, R. B. The Great Maya Droughts: Water, Life, and Death (University of New Mexico Press, 2001).

    Google Scholar 

  • Coe, M. D. The Maya (Thames and Hudson, 1993).

    Google Scholar 

  • Douglas, P. M. J. et al. Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. Proc. Natl. Acad. Sci. USA 112, 5607–5612 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Haug, G. H. et al. Climate and the collapse of Maya civilization. Science 299, 1731–1735 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ford, A. & Nigh, R. Origins of the Maya forest garden: Maya resource management. J. Ethnobiol. 29, 213–236 (2009).

    Article 

    Google Scholar 

  • Anderson, E. N. et al. Las Plantas de los Mayas: Etnobotánica en Quintana Roo, México (CONABIO-ECOSUR, 2005).

    Google Scholar 

  • Fedick, S. L. Maya cornucopia: Indigenous food plants of the Maya lowlands. in The Real Business of Ancient Maya Economies (eds. Masson, M. A., Freidel, D. A. & Demarest, A. A.). 224–237 (University Press Florida, 2020).

  • Ford, A. & Clarke, K. C. Linking the past and present of the ancient Maya: Lowland land use, population distribution, and density in the Late Classic period. in The Oxford Handbook of Historical Ecology and Applied Archaeology (eds. Isendahl, C. & Stump, D.) (Oxford Handbook of Historical Ecology and Applied Archaeology, 2015).

  • Ford, A. & Nigh, R. The Maya Forest Garden: Eight Millennia of Sustainable Cultivation of the Tropical Woodlands (Routledge, 2016).

  • Gómez-Pompa, A. On maya silviculture. Mexican Stud. (Estudios Mexicanos) 3, 1–17 (1987).

    Article 

    Google Scholar 

  • Beach, T., Luzzadder-Beach, S., Krause, S. & Walling, S. ‘Mayacene’ floodplain and wetland formation in the Rio Bravo watershed of northwestern Belize. Holocene 25(10), 1612–1622 (2015).

  • Pohl, M. D. et al. Early agriculture in the Maya lowlands. Lat. Am. Antiq. 7, 355–372 (1996).

    Article 

    Google Scholar 

  • Fedick, S. L. The Managed Mosaic: Ancient Maya Agriculture and Resource Use (University of Utah Press, 1996).

    Google Scholar 

  • Mueller, A. D. et al. Recovery of the forest ecosystem in the tropical lowlands of northern Guatemala after disintegration of Classic Maya polities. Geology 38, 523–526 (2010).

    Article 
    ADS 

    Google Scholar 

  • Hodell, D. A., Curtis, J. H. & Brenner, M. Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391–394 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Islebe, G. A., Hooghiemstra, H., Brenner, M., Curtis, J. H. & Hodell, D. A. A Holocene vegetation history from lowland Guatemala. Holocene 6, 265–271 (1996).

    Article 
    ADS 

    Google Scholar 

  • Medina-Elizalde, M., Polanco-Martínez, J. M., Lases-Hernández, F., Bradley, R. & Burns, S. Testing the ‘tropical storm’ hypothesis of Yucatan Peninsula climate variability during the Maya Terminal Classic Period. Quat. Res. 86, 111–119 (2016).

  • Aragón-Moreno, A. A., Islebe, G. A., Torrescano-Valle, N. & Arellano-Verdejo, J. Middle and late Holocene mangrove dynamics of the Yucatan Peninsula, Mexico. J. South Am. Earth Sci. 85, 307–311 (2018).

    Article 
    ADS 

    Google Scholar 

  • Aragón-Moreno, A. A., Islebe, G. A., Roy, P. D., Torrescano-Valle, N. & Mueller, A. D. Climate forcings on vegetation of the southeastern Yucatán Peninsula (Mexico) during the middle to late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 495, 214–226 (2018).

    Article 

    Google Scholar 

  • Kennett, D. J. et al. Development and disintegration of Maya political systems in response to climate change. Science 338, 788–791 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Conde, C. et al. El Niño y la agricultura. in Los impactos de El Niño en México (ed. Magaña, V.). 103–135 (Dirección General de Protección Civil, Secretaría de Gobernación, México, 1999).

  • Magaña, V. O., Vázquez, J. L., Pérez, J. L. & Pérez, J. B. Impact of El Niño on precipitation in Mexico. Geofísica Int. 42, 313–330 (2003).

    Google Scholar 

  • Wahl, D., Byrne, R. & Anderson, L. An 8700 year paleoclimate reconstruction from the southern Maya lowlands. Quat. Sci. Rev. 103, 19–25 (2014).

    Article 
    ADS 

    Google Scholar 

  • Nooren, K. et al. Climate impact on the development of Pre-Classic Maya civilisation. Clim. Past 14, 1253–1273 (2018).

    Article 

    Google Scholar 

  • Palomo-Kumul, J., Valdez-Hernández, M., Islebe, G. A., Cach-Pérez, M. J. & El Andrade, J. L. Niño-Southern oscillation affects the water relations of tree species in the Yucatan Peninsula. Mexico. Sci. Rep. 11, 10451 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rosenswig, R. M., VanDerwarker, A. M., Culleton, B. J. & Kennett, D. J. Is it agriculture yet? Intensified maize-use at 1000 cal BC in the Soconusco and Mesoamerica. J. Anthropol. Archaeol. 40, 89–108 (2015).

    Article 

    Google Scholar 

  • Mueller, A. D. et al. Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene. Quat. Res. 71, 133–141 (2009).

    Article 

    Google Scholar 

  • Aragón-Moreno, A. A., Islebe, G. A. & Torrescano-Valle, N. A ~3800-yr, high-resolution record of vegetation and climate change on the north coast of the Yucatan Peninsula. Rev. Palaeobot. Palynol. 178, 35–42 (2012).

    Article 

    Google Scholar 

  • Carrillo-Bastos, A., Islebe, G. A. & Torrescano-Valle, N. 3800 Years of quantitative precipitation reconstruction from the Northwest Yucatan Peninsula. PLoS ONE 8, e84333 (2013).

    Article 
    ADS 

    Google Scholar 

  • Berglund, B. E. Human impact and climate changes—Synchronous events and a causal link?. Quat. Int. 105, 7–12 (2003).

    Article 

    Google Scholar 

  • Vela-Peláez, A. A., Torrescano-Valle, N., Islebe, G. A., Mas, J. F. & Weissenberger, H. Holocene precipitation changes in the Maya forest, Yucatán peninsula. Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. 505, 42–52 (2018).

    Article 
    ADS 

    Google Scholar 

  • Torrescano-Valle, N. & Islebe, G. A. Holocene paleoecology, climate history and human influence in the southwestern Yucatán Peninsula. Rev. Palaeobot. Palynol. 217, 1–8 (2015).

    Article 

    Google Scholar 

  • Anselmetti, F. S., Hodell, D. A., Ariztegui, D., Brenner, M. & Rosenmeier, M. F. Quantification of soil erosion rates related to ancient Maya deforestation. Geology 35, 915–918 (2007).

    Article 
    ADS 

    Google Scholar 

  • Beach, T. et al. A review of human and natural changes in Maya Lowland wetlands over the Holocene. Quat. Sci. Rev. 28, 1710–1724 (2009).

    Article 
    ADS 

    Google Scholar 

  • Kerr, M. T. Holocene Precipitation Variability, Prehistoric Agriculture, and Natural and Human-Set Fires in Costa Rica (University of Tennessee, 2019).

    Google Scholar 

  • Ebert, C. E., Peniche May, N., Culleton, B. J., Awe, J. J. & Kennett, D. J. Regional response to drought during the formation and decline of Preclassic Maya societies. Quat. Sci. Rev. 173, 211–235 (2017).

    Article 
    ADS 

    Google Scholar 

  • De la Barreda, B., Metcalfe, S. E. & Boyd, D. S. Precipitation regionalization, anomalies and drought occurrence in the Yucatan Peninsula, Mexico. Int. J. Climatol. 40, 4541–4555 (2020).

    Article 

    Google Scholar 

  • Islebe, G. A. et al. Holocene Paleoecology and Paleoclimatology of south and south-eastern Mexico: A palynological approach. in Mexico´s Environmental Holocene and Anthropocene History (eds. Torrescano-Valle, N., Islebe, G. A. & Roy, P.) (Springer, 2019).

  • Tuxill, J., Reyes, L. A., Moreno, L. L., Uicab, V. C. & Jarvis, D. I. All maize is not equal: Maize variety choices and Mayan foodways in rural Yucatan, Mexico. in Pre-Columbian Foodways: Interdisciplinary Approaches to Food, Culture, and Markets in Ancient Mesoamerica (eds. Staller, J. & Carrasco, M.) 467–486 (Springer, 2010).

  • Torrescano-Valle, N., Ramírez-Barajas, P. J., Islebe, G. A., Vela-Pelaez, A. A. & Folan, W. J. Human influence versus natural climate variability. in The Holocene and Anthropocene Environmental History of Mexico: A Paleoecological Approach on Mesoamerica (eds. Torrescano-Valle, N., Islebe, G. A. & Roy, P. D.). 171–194 (Springer, 2019).

  • Faegri, K. & Iversen, J. Textbook of Pollen Analysis (Wiley, 1989).

    Google Scholar 

  • Ford, A. The Maya forest: A domesticated landscape. in The Maya World (eds. Hutson, S. R. & Ardren, T.). 519–539 (Routledge, 2020).

  • Fedick, S. L. & Santiago, L. S. Large variation in availability of Maya food plant sources during ancient droughts. Proc. Natl. Acad. Sci. USA 119, 2115657118 (2022).

    Article 

    Google Scholar 

  • Puleston, D. E. The role of ramón in Maya subsistence. in Maya Subsistence. 353–366 (Elsevier, 1982).

  • Atran, S. et al. Itza Maya tropical agro-forestry [and comments and replies]. Curr. Anthropol. 34, 633–700 (1993).

    Article 

    Google Scholar 

  • Dussol, L., Elliott, M., Michelet, D. & Nondédéo, P. Ancient Maya sylviculture of breadnut (Brosimum alicastrum Sw.) and sapodilla (Manilkara zapota (L.) P. Royen) at Naachtun (Guatemala): A reconstruction based on charcoal analysis. Quat. Int. 457, 29–42 (2017).

  • Ebel, R., de Jesús Méndez Aguilar, M. & Putnam, H. R. Milpa: One sister got climate-sick. The impact of climate change on traditional Maya farming systems. Int. J. Sociol. Agric. Food (Online) 24, 175–199 (2018).

    Google Scholar 

  • Hernández-González, O. & Vergara-Yoisura, S. Studies on the productivity of Brosimum alicastrum a tropical tree used for animal feed in the Yucatan Peninsula. Bothalia 22, 7 (2014).

    Google Scholar 

  • Martínez-Ruiz, N. del R. & Larqué-Saavedra, A. Semilla de Ramón. in Alimentos Vegetales Autóctonos Iberoamericanos Subutilizados (eds. Sonia, S.-A. & Álvarez-Parrilla, E.). 177–192 (Fabro Editores, 2018).

  • Hatfield, J. L. & Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 10, 103 (2019).

    Article 

    Google Scholar 

  • Basso, B. & Ritchie, J. T. Evapotranspiration in high-yielding maize and under increased vapor pressure deficit in the US Midwest. Agric. Environ. Lett. 3, 170039 (2018).

    Article 

    Google Scholar 

  • Gregory, P. J., Simmonds, L. P. & Pilbeam, C. J. Soil type, climatic regime, and the response of water use efficiency to crop management. Agron. J. 92, 814–820 (2000).

    Article 

    Google Scholar 

  • Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research. R package at https://CRAN.R-project.org/package=psych (2022).

  • Wickham, H. & Bryan, J. readxl: Read Excel Files. R package at https://readxl.tidyverse.org/ (2022).

  • Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).

    Google Scholar 

  • QGIS Development Team. QGIS Geographic Information System. QGIS Association at https://www.qgis.org (2022)

  • Instituto Nacional de Estadistica Geographia e Informatica (INEGI). 1:1000000 Merida, Carta de Precipitacion. Merida, Yucatán, Mexico (1981).


  • Source: Ecology - nature.com

    Manufacturing a cleaner future

    MIT community in 2022: A year in review