in

Precipitation and potential evapotranspiration determine the distribution patterns of threatened plant species in Sichuan Province, China

  • Paudel, P. K., Sipos, J. & Brodie, J. F. Threatened species richness along a Himalayan elevational gradient: Quantifying the influences of human population density, range size, and geometric constraints. BMC Ecol. 18, 6. https://doi.org/10.1186/s12898-018-0162-3 (2018).

    Article 

    Google Scholar 

  • Pan, K. Distribution of Coniferous Plants in Southwest China (Chengdu Cartographic Publishing House, 2021).

    Google Scholar 

  • Zhang, Y.-B. & Ma, K.-P. Geographic distribution patterns and status assessment of threatened plants in China. Biol. Conserv. 17, 1783. https://doi.org/10.1007/s10531-008-9384-6 (2008).

    Article 

    Google Scholar 

  • Shrestha, N., Xu, X., Meng, J. & Wang, Z. Vulnerabilities of protected lands in the face of climate and human footprint changes. Nat. Commun. 12, 1632. https://doi.org/10.1038/s41467-021-21914-w (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pandey, B. et al. Energy–water and seasonal variations in climate underlie the spatial distribution patterns of gymnosperm species richness in China. Ecol. Evol. 10, 9474–9485. https://doi.org/10.1002/ece3.6639 (2020).

    Article 

    Google Scholar 

  • Gao, J. & Liu, Y. Climate stability is more important than water–energy variables in shaping the elevational variation in species richness. Ecol. Evol. 8, 6872–6879. https://doi.org/10.1002/ece3.4202 (2018).

    Article 

    Google Scholar 

  • Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x (2001).

    Article 

    Google Scholar 

  • Dakhil, M. A. et al. Richness patterns of endemic and threatened conifers in south-west China: Topographic-soil fertility explanation. Environ. Res. Lett. 16, 034017. https://doi.org/10.1088/1748-9326/abda6e (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dakhil, M. A. et al. Potential risks to endemic conifer montane forests under climate change: Integrative approach for conservation prioritization in southwestern China. Landsc. Ecol. 36, 3137–3151. https://doi.org/10.1007/s10980-021-01309-4 (2021).

    Article 

    Google Scholar 

  • Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993. https://doi.org/10.1038/s41467-020-14771-6 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bhattarai, K. R. & Vetaas, O. R. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Glob. Ecol. Biogeogr. 12, 327–340. https://doi.org/10.1046/j.1466-822X.2003.00044.x (2003).

    Article 

    Google Scholar 

  • Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134. https://doi.org/10.1111/j.1461-0248.2004.00671.x (2004).

    Article 

    Google Scholar 

  • Vetaas, O. R., Paudel, K. P. & Christensen, M. Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. J. Biogeogr. 46, 1652–1663. https://doi.org/10.1111/jbi.13564 (2019).

    Article 

    Google Scholar 

  • Pandey, B. et al. Distribution pattern of gymnosperms’ richness in Nepal: Effect of environmental constrains along elevational gradients. Plants 9, 625. https://doi.org/10.3390/plants9050625 (2020).

    Article 

    Google Scholar 

  • Kluge, J. et al. Elevational seed plants richness patterns in Bhutan, Eastern Himalaya. J. Biogeogr. 44, 1711–1722. https://doi.org/10.1111/jbi.12955 (2017).

    Article 

    Google Scholar 

  • Currie, D. J. Energy and large-scale patterns of animal- and plant- species richness. Am. Nat. 137, 27–49. https://doi.org/10.1086/285144 (1991).

    Article 

    Google Scholar 

  • MacArthur, R. H. & MacArthur, J. W. On bird species diversity. Ecology 42, 594–598. https://doi.org/10.2307/1932254 (1961).

    Article 

    Google Scholar 

  • Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252. https://doi.org/10.1038/385252a0 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. P. Natl. Acad. Sci. USA 104, 5925–5930. https://doi.org/10.1073/pnas.0608361104 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pausas, J. G. & Austin, M. P. Patterns of plant species richness in relation to different environments: An appraisal. J. Veg. Sci. 12, 153–166. https://doi.org/10.2307/3236601 (2001).

    Article 

    Google Scholar 

  • Colwell, R. K. & Lees, D. C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76. https://doi.org/10.1016/S0169-5347(99)01767-X (2000).

    Article 
    CAS 

    Google Scholar 

  • McCain, C. M. The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. J. Biogeogr. 31, 19–31. https://doi.org/10.1046/j.0305-0270.2003.00992.x (2004).

    Article 

    Google Scholar 

  • Gao, D. et al. The mid-domain effect and habitat complexity applied to elevational gradients: Moss species richness in a temperate semihumid monsoon climate mountain of China. Ecol. Evol. 11, 7448–7460. https://doi.org/10.1002/ece3.7576 (2021).

    Article 

    Google Scholar 

  • Wang, J.-H., Cai, Y.-F., Zhang, L., Xu, C.-K. & Zhang, S.-B. Species richness of the family Ericaceae along an elevational gradient in Yunnan, China. Forests 9, 511. https://doi.org/10.3390/f9090511 (2018).

    Article 

    Google Scholar 

  • Xu, M. et al. The mid-domain effect of mountainous plants is determined by community life form and family flora on the Loess Plateau of China. Sci. Rep. 11, 10974. https://doi.org/10.1038/s41598-021-90561-4 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sichuan Vegetation Cooperation Group. Vegetation in Sichuan (Sichuan People’s Publishing House, 1980).

    Google Scholar 

  • Pan, K., Wu, N., Pan, K. & Chen, Q. A discussion on the issues of the re-construction of ecological shelter zone on the upper reaches of the Yangtze River. Acta Ecol. Sin. 24, 617–629. https://doi.org/10.3321/j.issn:1000-0933.2004.03.032 (2004).

    Article 

    Google Scholar 

  • Jpl, N. A. S. A. NASA shuttle radar topography mission global 1 arc second. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (2013).

  • Liu, Y. et al. Determinants of richness patterns differ between rare and common species: Implications for Gesneriaceae conservation in China. Divers. Distrib. 23, 235–246. https://doi.org/10.1111/ddi.12523 (2017).

    Article 

    Google Scholar 

  • Liao, Z. et al. Climate change jointly with migration ability affect future range shifts of dominant fir species in Southwest China. Divers. Distrib. 26, 352–367. https://doi.org/10.1111/ddi.13018 (2020).

    Article 

    Google Scholar 

  • Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad Digit. Repos. https://doi.org/10.5061/dryad.kd1d4 (2018).

  • Running, S. W., Mu, Q. & Zhao, M. MODIS/terra net evapotranspiration 8-day L4 global 500m SIN grid V061. NASA EOSDIS Land Process. DAAC https://doi.org/10.5067/MODIS/MOD16A2.061 (2021).

  • Mu H. et al. An Annual Global Terrestrial Human Footprint Dataset from 2000 to 2018https://doi.org/10.6084/m9.figshare.16571064.v5(2021).

  • Zhang, D., Zhang, Y., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan Mountains, southwestern China. Biol. Conserv. 18, 699–716. https://doi.org/10.1007/s10531-008-9534-x (2009).

    Article 

    Google Scholar 

  • Sun, L., Luo, J., Qian, L., Deng, T. & Sun, H. The relationship between elevation and seed-plant species richness in the Mt. Namjagbarwa region (Eastern Himalayas) and its underlying determinants. Glob. Ecol. Conserv. 23, e01053. https://doi.org/10.1016/j.gecco.2020.e01053 (2020).

    Article 

    Google Scholar 

  • Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503. https://doi.org/10.1002/ece3.5027 (2019).

    Article 

    Google Scholar 

  • Krömer, T., Acebey, A., Kluge, J. & Kessler, M. Effects of altitude and climate in determining elevational plant species richness patterns: A case study from Los Tuxtlas, Mexico. Flora 208, 197–210. https://doi.org/10.1016/j.flora.2013.03.003 (2013).

    Article 

    Google Scholar 

  • Pandey, B. et al. Contrasting gymnosperm diversity across an elevation gradient in the ecoregion of China: The role of temperature and productivity. Front. Ecol. Evol. 9, 1–7. https://doi.org/10.3389/fevo.2021.679439 (2021).

    Article 
    CAS 

    Google Scholar 

  • Geng, S. et al. Diversity of vegetation composition enhances ecosystem stability along elevational gradients in the Taihang Mountains, China. Ecol. Indic. 104, 594–603. https://doi.org/10.1016/j.ecolind.2019.05.038 (2019).

    Article 

    Google Scholar 

  • Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, 1995).

    Book 

    Google Scholar 

  • Zhang, S., Chen, W., Huang, J., Bi, Y. & Yang, X. Orchid species richness along elevational and environmental gradients in Yunnan, China. PLoS ONE https://doi.org/10.1371/journal.pone.0142621 (2015).

    Article 

    Google Scholar 

  • Bertuzzo, E. et al. Geomorphic controls on elevational gradients of species richness. Proc. Natl. Acad. Sci. USA 113, 1737–1742. https://doi.org/10.1073/pnas.1518922113 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301. https://doi.org/10.1046/j.1466-822X.2002.00297.x (2002).

    Article 

    Google Scholar 

  • Antonio, T. & Robert, Z. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).

  • Panda, R. M., Behera, M. D., Roy, P. S. & Biradar, C. Energy determines broad pattern of plant distribution in Western Himalaya. Ecol. Evol. 7, 10850–10860. https://doi.org/10.1002/ece3.3569 (2017).

    Article 

    Google Scholar 

  • Vetaas, O. R. & Ferrer-Castán, D. Patterns of woody plant species richness in the Iberian Peninsula: Environmental range and spatial scale. J. Biogeogr. 35, 1863–1878. https://doi.org/10.1111/j.1365-2699.2008.01931.x (2008).

    Article 

    Google Scholar 

  • McCain, C. M. & Grytnes, J.-A. Encyclopedia of Life Sciences (ELS) (Wiley, 2010).

    Google Scholar 

  • Tukiainen, H., Bailey, J. J., Field, R., Kangas, K. & Hjort, J. Combining geodiversity with climate and topography to account for threatened species richness. Conserv. Biol. 31, 364–375. https://doi.org/10.1111/cobi.12799 (2017).

    Article 

    Google Scholar 

  • Zhang, Z., He, J.-S., Li, J. & Tang, Z. Distribution and conservation of threatened plants in China. Biol. Conserv. 192, 454–460. https://doi.org/10.1016/j.biocon.2015.10.019 (2015).

    Article 

    Google Scholar 

  • Shrestha, N., Su, X., Xu, X. & Wang, Z. The drivers of high Rhododendron diversity in south-west China: Does seasonality matter?. J. Biogeogr. 45, 438–447. https://doi.org/10.1111/jbi.13136 (2017).

    Article 

    Google Scholar 

  • Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117. https://doi.org/10.1890/03-8006 (2003).

    Article 

    Google Scholar 

  • Bijlsma, R. & Loeschcke, V. Environmental stress, adaptation and evolution: An overview. J. Evol. Biol. 18, 744–749. https://doi.org/10.1111/j.1420-9101.2005.00962.x (2005).

    Article 
    CAS 

    Google Scholar 

  • Feng, G., Mao, L., Sandel, B., Swenson, N. G. & Svenning, J. C. High plant endemism in China is partially linked to reduced glacial-interglacial climate change. J. Biogeogr. 43, 145–154. https://doi.org/10.1111/jbi.12613 (2016).

    Article 

    Google Scholar 

  • Zhang, X., Wang, H., Wang, R., Wang, Y. & Liu, J. Relationships between plant species richness and environmental factors in nature reserves at different spatial scales. Pol. J. Environ. Stud. 26, 2375–2384. https://doi.org/10.15244/pjoes/69032 (2017).

    Article 

    Google Scholar 

  • Mu, H. et al. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 9, 176. https://doi.org/10.1038/s41597-022-01284-8 (2022).

    Article 

    Google Scholar 

  • Kadmon, R. & Benjamini, Y. Effects of productivity and disturbance on species richness: A neutral model. Am. Nat. 167, 939–946. https://doi.org/10.1086/504602 (2006).

    Article 

    Google Scholar 

  • Olson, D. M. & Dinerstein, E. The global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224. https://doi.org/10.2307/3298564 (2002).

    Article 

    Google Scholar 

  • Chéng, X. Y. Atlas of National Wildlife Conservation and Rare and Endangered Plants of Sichuan Province (Science Press, 2018).

    Google Scholar 

  • Wu, Z. & Raven, P. Flora of China. Vol. 4 (Cycadaceae Through Fagaceae) (Science Press and Missouri Botanical Garden Press, 1999).

    Google Scholar 

  • Sanders, N. J. Elevational gradients in ant species richness: Area, geometry, and Rapoport’s rule. Ecography 25, 25–32. https://doi.org/10.1034/j.1600-0587.2002.250104.x (2002).

    Article 

    Google Scholar 

  • RangeModel: A Monte Carlo simulation tool for assessing geometric constraints on species richness. Version 5. User’s Guide and application (2006).

  • Colwell, R. K. RangeModel: Tools for exploring and assessing geometric constraints on species richness (the mid-domain effect) along transects. Ecography 31, 4–7. https://doi.org/10.1111/j.2008.0906-7590.05347.x (2008).

    Article 

    Google Scholar 

  • Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 (2002).

    Article 

    Google Scholar 

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122–170122. https://doi.org/10.1038/sdata.2017.122 (2017).

    Article 

    Google Scholar 

  • Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800. https://doi.org/10.1016/j.rse.2011.02.019 (2011).

    Article 
    ADS 

    Google Scholar 

  • Zhang, Z. et al. Distribution and conservation of orchid species richness in China. Biol. Conserv. 181, 64–72. https://doi.org/10.1016/j.biocon.2014.10.026 (2015).

    Article 

    Google Scholar 

  • D’Agostino, R. Goodness-of-Fit-Techniques (Routledge, 2017).

    Book 
    MATH 

    Google Scholar 

  • Hilbe, J. M. Negative Binomial Regression (Cambridge University Press, 2011).

    Book 
    MATH 

    Google Scholar 

  • Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).

    MATH 

    Google Scholar 

  • Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).

    Book 

    Google Scholar 

  • Grace, J. B. & Pugesek, B. H. A structural equation model of plant species richness and its application to a coastal wetland. Am. Nat. 149, 436–460. https://doi.org/10.1086/285999 (1997).

    Article 

    Google Scholar 

  • R Development Core Team. (R Foundation for Statistical Computing, 2019).

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).

    Book 
    MATH 

    Google Scholar 

  • Fox, J. et al. R Foundation for Statistical Computing Vol. 16 (2012).

  • Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36. https://doi.org/10.18637/jss.v048.i02 (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique

    Investigation of anticoagulant rodenticide resistance induced by Vkorc1 mutations in rodents in Lebanon