in

Carbon sinks and carbon emissions balance of land use transition in Xinjiang, China: differences and compensation

  • Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of earth’s ecosystems. Science 277, 494–499. https://doi.org/10.1126/science.277.5325.494 (1997).

    Article 
    CAS 

    Google Scholar 

  • Yue, T. X., Fan, Z. M. & Liu, J. Y. Scenarios of land cover in China. Glob. Planet. Change 55, 317–342. https://doi.org/10.1016/j.gloplacha.2006.10.002 (2007).

    Article 
    ADS 

    Google Scholar 

  • Ii, B. L. T., Lambin, E. F. & Reen Be Rg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 104, 20666–20671. https://doi.org/10.1073/pnas.0704119104 (2007).

    Article 

    Google Scholar 

  • IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories—IPCC. https://www.ipcc.ch/report/2006-ipcc-guidelines-for-national-greenhouse-gas-inventories/ (2006).

  • Gallant, K., Withey, P., Risk, D., van Kooten, G. C. & Spafford, L. Measurement and economic valuation of carbon sequestration in Nova Scotian wetlands. Ecol. Econ. 171, 106619. https://doi.org/10.1016/j.ecolecon.2020.10661 (2020).

    Article 

    Google Scholar 

  • Deng, C. et al. Spatiotemporal dislocation of urbanization and ecological construction increased the ecosystem service supply and demand imbalance. J. Environ. Manag. 288, 112478. https://doi.org/10.1016/j.jenvman.2021.112478 (2021).

    Article 

    Google Scholar 

  • Wang, J., Zhai, T., Lin, Y., Kong, X. & He, T. Spatial imbalance and changes in supply and demand of ecosystem services in China. Sci. Total Environ. 657, 781–791. https://doi.org/10.1016/j.scitotenv.2018.12.080 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Long, R., Li, J., Chen, H., Zhang, L. & Li, Q. Embodied carbon dioxide flow in international trade: A comparative analysis based on China and Japan. J. Environ. Manag. 209, 371–381. https://doi.org/10.1016/j.jenvman.2017.12.067 (2018).

    Article 

    Google Scholar 

  • Lv, Y., Liu, J., Cheng, J. & Andreoni, V. The persistent and transient total factor carbon emission performance and its economic determinants: Evidence from China’s province-level panel data. J. Clean. Prod. 316, 128198. https://doi.org/10.1016/j.jclepro.2021.128198 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y., Shataer, R., Zhang, Z., Zhen, H. & Xia, T. Evaluation and analysis of influencing factors of ecosystem service value change in Xinjiang under different land use types. Water 14, 1424. https://doi.org/10.3390/w14091424 (2022).

    Article 

    Google Scholar 

  • Zhang, Y. et al. How can an ecological compensation threshold be determined? A discriminant model integrating the minimum data approach and the most appropriate land use scenarios. Sci. Total Environ. 852, 158377. https://doi.org/10.1016/j.scitotenv.2022.158377 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Shi, M. et al. Cropland expansion mitigates the supply and demand deficit for carbon sequestration service under different scenarios in the future—the case of Xinjiang. Agriculture 12, 1182. https://doi.org/10.3390/agriculture12081182 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yuan, K., Li, F., Yang, H. & Wang, Y. The influence of land use change on ecosystem service value in Shangzhou district. Int. J. Environ. Res. Public. Health 16, 1321. https://doi.org/10.3390/ijerph16081321 (2019).

    Article 

    Google Scholar 

  • Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Multiscale Assessments. https://www.millenniu-massessment.org/en/Multiscale.html (Island Press, 2005).

  • Liu, J. Y., Liu, M. L., Zhuang, D. F., Zhang, Z. X. & Deng, X. Z. Study on spatial pattern of land-use change in China during 1995–2000. Sci. China Ser. Earth Sci. 46, 373–384. https://doi.org/10.1360/03yd9033 (2003).

    Article 

    Google Scholar 

  • Lambin, E. F. & Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 27, 108–118. https://doi.org/10.1016/j.landusepol.2009.09.003 (2010).

    Article 

    Google Scholar 

  • Long, H., Qu, Y., Tu, S., Zhang, Y. & Jiang, Y. Development of land use transitions research in China. J. Geogr. Sci. 30, 1195–1214. https://doi.org/10.1007/s11442-020-1777-9 (2020).

    Article 

    Google Scholar 

  • Portela, R. & Rademacher, I. A dynamic model of patterns of deforestation and their effect on the ability of the Brazilian Amazonia to provide ecosystem services. Ecol. Model. 143, 115–146. https://doi.org/10.1016/S0304-3800(01)00359-3 (2001).

    Article 

    Google Scholar 

  • Yin, D., Li, X., Li, G., Zhang, J. & Yu, H. Spatio-temporal evolution of land use transition and its eco-environmental effects: A case study of the Yellow River Basin, China. Land 9, 514. https://doi.org/10.3390/land9120514 (2020).

    Article 

    Google Scholar 

  • Alkimim, A. & Clarke, K. C. Land use change and the carbon debt for sugarcane ethanol production in Brazil. Land Use Policy 72, 65–73. https://doi.org/10.1016/j.landusepol.2017.12.039 (2018).

    Article 

    Google Scholar 

  • Wang, J. & Zhou, W. Ecosystem service flows: Recent progress and future perspectives. Acta Ecol. Sin. 39, 4213–4222. https://doi.org/10.5846/stxb201807271605 (2019).

    Article 

    Google Scholar 

  • Krozer, Y., Coenen, F., Hanganu, J., Lordkipanidze, M. & Sbarcea, M. Towards innovative governance of nature areas. Sustainability 12, 10624. https://doi.org/10.3390/su122410624 (2020).

    Article 

    Google Scholar 

  • Pan, X., Xu, L., Yang, Z. & Yu, B. Payments for ecosystem services in China: Policy, practice, and progress. J. Clean. Prod. 158, 200–208. https://doi.org/10.1016/j.jclepro.2017.04.127 (2017).

    Article 

    Google Scholar 

  • Su, K. et al. The establishment of a cross-regional differentiated ecological compensation scheme based on the benefit areas and benefit levels of sand-stabilization ecosystem service. J. Clean. Prod. 270, 122490. https://doi.org/10.1016/j.jclepro.2020.122490 (2020).

    Article 

    Google Scholar 

  • Zhai, T., Zhang, D. & Zhao, C. How to optimize ecological compensation to alleviate environmental injustice in different cities in the Yellow River Basin? A case of integrating ecosystem service supply, demand and flow. Sustain. Cities Soc. 75, 103341. https://doi.org/10.1016/j.scs.2021.103341 (2021).

    Article 

    Google Scholar 

  • Zhai, T. et al. Did improvements of ecosystem services supply-demand imbalance change environmental spatial injustices?. Ecol. Indic. 111, 106068. https://doi.org/10.1016/j.ecolind.2020.106068 (2020).

    Article 

    Google Scholar 

  • Chen, W. et al. Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 701, 134690. https://doi.org/10.1016/j.scitotenv.2019.134690 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zheng, W., Ke, X., Xiao, B. & Zhou, T. Optimising land use allocation to balance ecosystem services and economic benefits—A case study in Wuhan, China. J. Environ. Manag. 248, 109306. https://doi.org/10.1016/j.jenvman.2019.109306 (2019).

    Article 

    Google Scholar 

  • Li, Z., Deng, X., Jin, G., Mohmmed, A. & Arowolo, A. O. Tradeoffs between agricultural production and ecosystem services: A case study in Zhangye, Northwest China. Sci. Total Environ. 707, 136032. https://doi.org/10.1016/j.scitotenv.2019.136032 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA. 107, 5242–5247. https://doi.org/10.1073/pnas.0907284107 (2010).

    Article 
    ADS 

    Google Scholar 

  • Yuan, B. et al. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 302, 126995. https://doi.org/10.1016/j.jclepro.2021.126995 (2021).

    Article 

    Google Scholar 

  • An, M. et al. Spatiotemporal change of ecologic environment quality and human interaction factors in three gorges ecologic economic corridor, based on RSEI. Ecol. Indic. 141, 109090. https://doi.org/10.1016/j.ecolind.2022.109090 (2022).

    Article 

    Google Scholar 

  • Liu, W., Yan, Y., Wang, D. & Ma, W. Integrate carbon dynamics models for assessing the impact of land use intervention on carbon sequestration ecosystem service. Ecol. Indic. 91, 268–277. https://doi.org/10.1016/j.ecolind.2018.03.087 (2018).

    Article 
    CAS 

    Google Scholar 

  • Adelisardou, F. et al. Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). Int. J. Environ. Sci. Technol. 19, 5929–5944. https://doi.org/10.1007/s13762-021-03676-6 (2021).

    Article 

    Google Scholar 

  • Yang, F. et al. Taklimakan desert carbon-sink decreases under climate change. Sci. Bull. 65, 431–433. https://doi.org/10.1016/j.scib.2019.12.022 (2020).

    Article 
    CAS 

    Google Scholar 

  • Huang, L., Liu, J., Shao, Q. & Xu, X. Carbon sequestration by forestation across China: Past, present, and future. Renew. Sustain. Energy Rev. 16, 1291–1299. https://doi.org/10.1016/j.rser.2011.10.004 (2012).

    Article 

    Google Scholar 

  • Hong, C. et al. Land-use emissions embodied in international trade. Science 376, 597–603. https://doi.org/10.1126/science.abj1572 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhu, E. et al. Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang, China. Sci. Total Environ. 646, 930–939. https://doi.org/10.1016/j.scitotenv.2018.07.317 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xiao, D., Niu, H., Guo, J., Zhao, S. & Fan, L. Carbon storage change analysis and emission reduction suggestions under land use transition: A case study of Henan province, China. Int. J. Environ. Res. Public. Health 18, 1844. https://doi.org/10.3390/ijerph18041844 (2021).

    Article 

    Google Scholar 

  • Boisvenue, C., Bergeron, Y., Bernier, P. & Peng, C. Simulations show potential for reduced emissions and carbon stocks increase in boreal forests under ecosystem management. Carbon Manag. 3, 553–568. https://doi.org/10.4155/CMT.12.57 (2012).

    Article 
    CAS 

    Google Scholar 

  • Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292. https://doi.org/10.1038/nature06591 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, T., Li, J. & Wang, Y. Carbon sequestration service flow in the Guanzhong-Tianshui economic region of China: How it flows, what drives it, and where could be optimized?. Ecol. Indic. 96, 548–558. https://doi.org/10.1016/j.ecolind.2018.09.040 (2019).

    Article 

    Google Scholar 

  • Yan, X. et al. An overview of distribution characteristics and formation mechanisms in global arid areas. Adv. Earth Sci. 34, 826–841. https://doi.org/10.11867/j.issn.1001-8166.2019.08.0826 (2019).

    Article 

    Google Scholar 

  • Abulizi, A. et al. Land-use change and its effects in Charchan Oasis, Xinjiang, China. Land Degrad. Dev. 28, 106–115. https://doi.org/10.1002/ldr.2530 (2017).

    Article 

    Google Scholar 

  • Zhang, Z. et al. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 110, 105826. https://doi.org/10.1016/j.ecolind.2019.105826 (2020).

    Article 

    Google Scholar 

  • Xie, L., Wang, H. & Liu, S. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 138, 108828. https://doi.org/10.1016/j.ecolind.2022.108828 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, Z. et al. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 134, 108499. https://doi.org/10.1016/j.ecolind.2021.108499 (2022).

    Article 
    CAS 

    Google Scholar 

  • Shi, M. et al. Trade-offs and synergies of multiple ecosystem services for different land use scenarios in the Yili River Valley, China. Sustainability 13, 1577. https://doi.org/10.3390/su13031577 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, C., Zhen, L., Bingzhen, D. U. & Sun, C. Assessment of the impact of Grain for Green project on farmers’ livelihood in the Loess Plateau. Chin. J. Eco-Agric. 22, 850–858. https://doi.org/10.3724/SP.J.1011.2014.30944 (2014).

    Article 

    Google Scholar 

  • Yang, H., Mu, S. & Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. CATENA 115, 85–95. https://doi.org/10.1016/j.catena.2013.11.020 (2014).

    Article 

    Google Scholar 

  • Bahtebay, J., Zhang, F., Ariken, M., Chan, N. W. & Tan, M. L. Evaluation of the coordinated development of urbanization-resources-environment from the incremental perspective of Xinjiang. China. J. Clean. Prod. 325, 129309. https://doi.org/10.1016/j.jclepro.2021.129309 (2021).

    Article 

    Google Scholar 

  • Chen, J. et al. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 7, 391. https://doi.org/10.1038/s41597-020-00736-3 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhu, H. & Li, X. Discussion on the index method of regional land use change. Acta Geogr. Sin. 58, 643–650. https://doi.org/10.3321/j.issn:0375-5444.2003.05.001 (2003).

    Article 

    Google Scholar 

  • Li, Y., Cao, Z., Long, H., Liu, Y. & Li, W. Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban–rural development: The case of Mu Us Sandy Land, China. J. Clean. Prod. 142, 697–715. https://doi.org/10.1016/j.jclepro.2016.09.011 (2017).

    Article 

    Google Scholar 

  • Zhou, Q., Li, B. & Kurban, A. Trajectory analysis of land cover change in arid environment of China. Int. J. Remote Sens. 29, 1093–1107. https://doi.org/10.1080/01431160701355256 (2008).

    Article 
    CAS 

    Google Scholar 

  • Zhang, F. & Rusuli, Y. Spatio-temporal variation of ecosystem service value based on LUCC trajectories: A case study of Bosten Lake Watershed. J. Beijing For. Univ. 43, 88–99. https://doi.org/10.12171/j.1000-1522.20210017 (2021).

    Article 

    Google Scholar 

  • Keller, A. A., Fournier, E. & Fox, J. Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis. J. Environ. Manag. 156, 23–30. https://doi.org/10.1016/j.jenvman.2015.03.017 (2015).

    Article 

    Google Scholar 

  • Li, K. et al. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County, China. Environ. Dev. 39, 100641. https://doi.org/10.1016/j.envdev.2021.100641 (2021).

    Article 

    Google Scholar 

  • Tang, X. et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA. 115, 4021–4026. https://doi.org/10.1073/pnas.1700291115 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yang, F. et al. Impact of differences in soil temperature on the desert carbon sink. Geoderma 379, 114636. https://doi.org/10.1016/j.geoderma.2020.114636 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xiang, M. et al. Spatio-temporal evolution and driving factors of carbon storage in the Western Sichuan Plateau. Sci. Rep. 12, 8114. https://doi.org/10.1038/s41598-022-12175-8 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • de Groot, R. S., Wilson, M. A. & Boumans, R. M. J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 41, 393–408. https://doi.org/10.1016/S0921-8009(02)00089-7 (2002).

    Article 

    Google Scholar 

  • Chen, J., Xue, M., Su, X. & Gao, J. Spatial transfer of regional ecosystem service in Nanjing City. Acta Ecol. Sin. 34, 5087–5095. https://doi.org/10.5846/stxb201308162095 (2014).

    Article 

    Google Scholar 

  • Hu, X. et al. Carbon sequestration benefits of the grain for Green Program in the hilly red soil region of southern China. Int. Soil Water Conserv. Res. 9, 271–278. https://doi.org/10.1016/j.iswcr.2020.11.005 (2021).

    Article 

    Google Scholar 

  • Yao, J. et al. Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Sci. Rev. 226, 103957. https://doi.org/10.1016/j.earscirev.2022.103957 (2022).

    Article 

    Google Scholar 

  • Li, J., Zuo, Q. & Ma, J. Analysis of spatial and temporal evolution characteristics of water-socioeconomic-ecosystem in Xinjiang. J. Beijing Norm. Univ. Sci. 56, 591–599. https://doi.org/10.12202/j.0476-0301.2020170 (2020).

    Article 

    Google Scholar 

  • Chen, X., Chang, C., Bao, A., Wu, S. & Luo, G. Spatial pattern and characteristics of land cover change in Xinjiang since past 40 years of the economic reform and opening up. ARID LAND Geogr. 43, 1–11. https://doi.org/10.12118/j.issn.1000-6060.2020.01.01 (2020).

    Article 

    Google Scholar 

  • Han, B. et al. Research progress and key issues of territory consolidation under the target of rural revitalization. J. Nat. Resour. 36, 3007–3030. https://doi.org/10.31497/zrzyxb.20211202 (2021).

    Article 

    Google Scholar 

  • Ziyuan, C. et al. Carbon emissions index decomposition and carbon emissions prediction in Xinjiang from the perspective of population-related factors, based on the combination of STIRPAT model and neural network. Environ. Sci. Pollut. Res. 29, 31781–31796. https://doi.org/10.1007/s11356-021-17976-4 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, C. et al. Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang. Renew. Sustain. Energy Rev. 67, 51–61. https://doi.org/10.1016/j.rser.2016.09.006 (2017).

    Article 

    Google Scholar 

  • Ma, C., Chen, Q., Hu, F., Li, S. & Cong, J. Research characteristic of carbon emissions calculation in Xinjiang. Resour. Dev. Mark. 36, 233–240+267. https://doi.org/10.3969/j.issn.1005-8141.2020.03.002 (2020).

    Article 

    Google Scholar 

  • Qin, Z. et al. Natural climate solutions for China: The last mile to carbon neutrality. Adv. Atmos. Sci. 38, 889–895. https://doi.org/10.1007/s00376-021-1031-0 (2021).

    Article 

    Google Scholar 

  • Kong, R. et al. Increasing carbon storage in subtropical forests over the Yangtze River basin and its relations to the major ecological projects. Sci. Total Environ. 709, 136163. https://doi.org/10.1016/j.scitotenv.2019.136163 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chang, J. et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 12, 118. https://doi.org/10.1038/s41467-020-20406-7 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, X. & Nuppenau, E.-A. Modelling payments for ecosystem services for solving future water conflicts at spatial scales: The Okavango River Basin example. Ecol. Econ. 184, 106982. https://doi.org/10.1016/j.ecolecon.2021.106982 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Validation of SNP markers for thermotolerance adaptation in Ovis aries adapted to different climatic regions using KASP-PCR technique

    Investigation of anticoagulant rodenticide resistance induced by Vkorc1 mutations in rodents in Lebanon