in

Low genetic diversity and predation threaten a rediscovered marine sponge

  • McCauley, D. J., Pinsky, M. L., Palumbi, S. R., Estes, J. A. & Warner, R. R. Marine defaunation: Animal loss in the global ocean. Science 347(6219), 1255641 (2015).

    Article 

    Google Scholar 

  • Webb, T. J. & Mindel, B. L. Global patterns of extinction risk in marine and non-marine systems. Curr. Biol. 25(4), 506–511 (2015).

    Article 
    CAS 

    Google Scholar 

  • Pinsky, M. L. & Fredston, A. A stark future for ocean life. Science 376(6592), 452–453 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bell, J. J., Bennett, H. M., Rovellini, A. & Webster, N. S. Sponges to be winners under near-future climate scenarios. Bioscience 68(12), 955–968 (2018).

    Article 

    Google Scholar 

  • Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31(21), 4773-4787.e8 (2021).

    Article 
    CAS 

    Google Scholar 

  • Penn, J. L. & Deutsch, C. Avoiding ocean mass extinction from climate warming. Science 376(6592), 524–526 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hubbard, D. M., Dugan, J. E., Schooler, N. K. & Viola, S. M. Local extirpations and regional declines of endemic upper beach invertebrates in southern California. Estuar. Coast. Shelf Sci. 150(Part A), 67–75 (2014).

    Article 
    ADS 

    Google Scholar 

  • Poquita-Du, R. C. et al. Last species standing: loss of Pocilloporidae corals associated with coastal urbanization in a tropical city state. Mar. Biodivers. 49, 1727–1741 (2019).

    Article 

    Google Scholar 

  • Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).

    Article 

    Google Scholar 

  • Bell, et al. Global conservation status of sponges. Conserv. Biol. 29(1), 42–53 (2015).

    Article 

    Google Scholar 

  • Kelmo, F., Bell, J. J. & Attrill, M. J. Tolerance of sponge assemblages to temperature anomalies: Resilience and proliferation of sponges following the 1997–8 El-Niño southern oscillation. PLoS ONE 8(10), e76441 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Micaroni, V. et al. Adaptive strategies of sponges to deoxygenated oceans. Glob. Change Biol. 28(6), 1972–1989 (2022).

    Article 

    Google Scholar 

  • Di Camillo, C. G., Bartolucci, I., Cerrano, C. & Bavestrello, G. Sponge disease in the Adriatic Sea. Mar. Ecol. 34(1), 62–71 (2013).

    Article 
    ADS 

    Google Scholar 

  • Pérez, T. & Vacelet, J. Effect of climatic and anthropogenic disturbances on sponge fisheries. In The Mediterranean Sea (eds Goffredo, S. & Dubinsky, Z.) 577–587 (Springer, 2014).

    Chapter 

    Google Scholar 

  • Ereskovsky, A., Ozerov, D. A., Pantyulin, A. N. & Tzetlin, A. B. Mass mortality event of White Sea sponges as the result of high temperature in summer 2018. Polar Biol. 42, 2313–2318 (2019).

    Article 

    Google Scholar 

  • Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26(6), 3202–3211 (2020).

    Article 
    ADS 

    Google Scholar 

  • Stevenson, A. et al. Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation. Sci. Rep. 10, 8176 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Beepat, S. S., Davy, S. K., Woods, L. & Bell, J. J. Short-term responses of tropical lagoon sponges to elevated temperature and nitrate. Mar. Environ. Res. 157, 104922 (2020).

    Article 
    CAS 

    Google Scholar 

  • Shore, A. et al. On a reef far, far away: Anthropogenic impacts following extreme storms affect sponge health and bacterial communities. Front. Mar. Sci. 8, 608036 (2021).

    Article 

    Google Scholar 

  • de Voogd et al. World Porifera Database https://www.marinespecies.org/porifera/ (2022).

  • Wulff, J. L. Assessing and monitoring coral reef sponges: Why and how?. Bull. Mar. Sci. 69(2), 831–846 (2001).

    ADS 

    Google Scholar 

  • Bell, J. J. The functional roles of marine sponges. Estuar. Coast. Shelf Sci. 79(3), 341–353 (2008).

    Article 
    ADS 

    Google Scholar 

  • Folkers, M. & Rombouts, T. Sponges revealed: a synthesis of their overlooked ecological functions within aquatic ecosystems. In YOUMARES 9—The Oceans: Our Research, Our Future (eds Jungblut, S. et al.) 181–194 (Springer, 2019).

    Google Scholar 

  • Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann. Rev. Mar. Sci. 12, 315–337 (2020).

    Article 

    Google Scholar 

  • Sawangwong, P. et al. Secondary metabolites from a marine sponge Cliona patera. Biochem. Syst. Ecol. 36(5), 493–496 (2008).

    Article 
    CAS 

    Google Scholar 

  • Zhang, H. et al. Bioactive secondary metabolites from the marine sponge genus Agelas. Mar. Drugs 15(11), 351 (2017).

    Article 

    Google Scholar 

  • He, Q., Miao, S., Ni, N., Man, Y. & Gong, K. A review of the secondary metabolites from the marine sponges of the genus Aaptos. Nat. Prod. Commun. 15(9), 1–12 (2020).

    CAS 

    Google Scholar 

  • Ho, et al. Assessing the diversity and biomedical potential of microbes associated with the Neptune’s Cup sponge, Cliona patera. Front. Microbiol. 12, 631445 (2021).

    Article 

    Google Scholar 

  • Pronzato, R. Mediterranean sponge fauna: A biological, historical and cultural heritage. Biogeographia 24(1), 91–99 (2003).

    Google Scholar 

  • DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. 10, 8365 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319(5865), 948–952 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vosmaer, G. C. J. Poterion a boring sponge. K. Ned. Akad. Wet. Proc. 11, 37–41 (1908).

    Google Scholar 

  • Lim, S. C., Tun, K. & Goh, E. Rediscovery of the Neptune’s Cup sponge in Singapore: Cliona or Poterion? Contributions to Marine Science 2012, 49–56 (2012).

  • Low, M. E. Y. The date of publication of Cliona patera (Hardwicke), the ‘sponge plant from the shores of Singapore’ (Porifera: Hadromerida: Clionaidae). Nat. Singap. 5, 223–227 (2012).

    Google Scholar 

  • Knight, K. Super-rare giant sponge discovered in seahorse hotspot. Fauna & Floral International https://www.fauna-flora.org/news/super-rare-sponge-discovered-seahorse-hotspot/ (2018).

  • The State of Queensland (Queensland Museum). Cliona patera. Queensland Museum Network https://collections.qm.qld.gov.au/objects/73638/cliona-patera (2012–2022).

  • Heath, D. J. Simultaneous hermaphroditism; Cost and benefit. J. Theor. Biol. 64, 363–373 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • André, C. & Lindegarth, M. Fertilization efficiency and gamete viability of a sessile, free-spawning bivalve, Cerastoderma edule. Ophelia 43(3), 215–227 (1995).

    Article 

    Google Scholar 

  • Bayer, S. R. et al. Fertilization success in scallop aggregations: Reconciling model predictions and field measurements of density effects. Ecosphere 9(8), e02359 (2018).

    Article 

    Google Scholar 

  • Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15(1), 10–13 (2000).

    Article 
    CAS 

    Google Scholar 

  • Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10(6), 1500–1508 (1996).

    Article 

    Google Scholar 

  • Lim, S. C. Porifera. Singapore Red Data Book. https://www.nparks.gov.sg/biodiversity/wildlife-in-singapore/species-list/sponge (2022).

  • Quek, Z. B. R., Chang, J. J. M., Ip, Y. C. A., Chan, Y. K. S. & Huang, D. Mitogenomes reveal alternative initiation codons and lineage-specific gene order conservation in echinoderms. Mol. Biol. Evol. 38(3), 981–985 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wörheide, G., Nichols, S. A. & Goldberg, J. Intragenomic variation of the rDNA internal transcribed spacers in sponges (Phylum Porifera): Implications for phylogenetic studies. Mol. Phylogenet. Evol. 33(3), 816–830 (2004).

    Article 

    Google Scholar 

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17), i884–i890 (2018).

    Article 

    Google Scholar 

  • Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads: A baiting and iterative mapping approach. Nucleic Acids Res. 41(13), e129 (2013).

    Article 
    CAS 

    Google Scholar 

  • Donath, A. et al. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 47(20), 10543–10552 (2019).

    Article 
    CAS 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013).

    Article 
    CAS 

    Google Scholar 

  • Darriba, D. et al. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37(1), 291–294 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35(21), 4453–4455 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).

    Article 
    CAS 

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012).

    Article 
    CAS 

    Google Scholar 

  • Xavier, J. R. et al. Molecular evidence of cryptic speciation in the “cosmopolitan” excavating sponge Cliona celata (Porifera, Clionaidae). Mol. Phylogenet. Evol. 56(1), 13–20 (2010).

    Article 
    CAS 

    Google Scholar 

  • de Paula, T. S., Zilberberg, C., Hajdu, E. & Lôbo-Hajdua, G. Morphology and molecules on opposite sides of the diversity gradient: Four cryptic species of the Cliona celata (Porifera, Demospongiae) complex in South America revealed by mitochondrial and nuclear markers. Mol. Phylogenet. Evol. 62(1), 529–541 (2012).

    Article 

    Google Scholar 

  • Plese, B. et al. Mitochondrial evolution in the Demospongiae (Porifera): Phylogeny, divergence time, and genome biology. Mol Phylogenet Evol 155, 107011 (2021).

    Article 

    Google Scholar 

  • Lavrov, D. V., Adamski, M., Chevaldonné, P. & Adamska, M. Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges. Curr. Biol. 26(1), 86–92 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lavrov, D. V. & Pett, W. Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages. Genome Biol. Evol. 8(9), 2896–2913 (2016).

    Article 
    CAS 

    Google Scholar 

  • Haen, K. M., Pett, W. & Lavrov, D. V. Eight new mtDNA sequences of glass sponges reveal an extensive usage of + 1 frameshifting in mitochondrial translation. Gene 535(2), 336–344 (2014).

    Article 
    CAS 

    Google Scholar 

  • Shearer, T. L., van Oppen, M. J. H., Romano, S. L. & Wörheide, G. Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol. Ecol. 11(12), 2475–2487 (2002).

    Article 
    CAS 

    Google Scholar 

  • Lavrov, D. V., Forget, L., Kelly, M. & Lang, B. F. Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol. Biol. Evol. 22(5), 1231–1239 (2005).

    Article 
    CAS 

    Google Scholar 

  • Huang, D., Meier, R., Todd, P. A. & Chou, L. M. Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J. Mol. Evol. 66(2), 167–174 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wörheide, G. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar. Biol. 148, 907–912 (2006).

    Article 

    Google Scholar 

  • León-Pech, M. G., Cruz-Barraza, J. A., Carballo, J. L., Calderon-Aguilera, L. E. & Rocha-Olivares, A. Pervasive genetic structure at different geographic scales in the coral-excavating sponge Cliona vermifera (Hancock, 1867) in the Mexican Pacific. Coral Reefs 34, 887–897 (2015).

    Article 
    ADS 

    Google Scholar 

  • Yang, Q., Franco, C. M. M., Sorokin, S. J. & Zhang, W. Development of a multilocus-based approach for sponge (phylum Porifera) identification: Refinement and limitations. Sci. Rep. 7, 41422 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wörheide, G., Epp, L. S. & Macis, L. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): Founder effects, vicariance, or both?. BMC Evol. Biol. 8, 24 (2008).

    Article 

    Google Scholar 

  • Lai, S., Loke, L. H. L., Hilton, M. J., Bouma, T. J. & Todd, P. A. The effects of urbanisation on coastal habitats and the potential for ecological engineering: A Singapore case study. Ocean Coast. Manag. 103, 78–85 (2015).

    Article 

    Google Scholar 

  • Kuempel, C. D. et al. Identifying management opportunities to combat climate, land, and marine threats across less climate exposed coral reefs. Conserv. Biol. 36(3), e13856 (2022).

    Article 

    Google Scholar 

  • Neo, M. L. et al. Giant clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. In Oceanography and Marine Biology: An Annual Review Vol. 55 (eds Hawkins, S. J. et al.) 87–388 (CRC Press, 2017).

    Chapter 

    Google Scholar 

  • Orlando, L. et al. Ancient DNA analysis. Nat. Rev. Methods Prim. 1, 14 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cárdenas, P. & Moore, J. A. First records of Geodia demosponges from the New England seamounts, an opportunity to test the use of DNA mini-barcodes on museum specimens. Mar. Biodiv. 49, 163–174 (2019).

    Article 

    Google Scholar 

  • Erpenbeck, D. et al. Minimalist barcodes for sponges: A case study classifying African freshwater Spongillida. Genome 62(1), 1–10 (2019).

    Article 

    Google Scholar 

  • Chang, D. & Shapiro, B. Using ancient DNA and coalescent-based methods to infer extinction. Biol. Lett. 12(2), 20150822 (2016).

    Article 

    Google Scholar 

  • Pacioni, C. et al. Genetic diversity loss in a biodiversity hotspot: Ancient DNA quantifies genetic decline and former connectivity in a critically endangered marsupial. Mol. Ecol. 24(23), 5813–5828 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lombal, A. J. et al. Using ancient DNA to quantify losses of genetic and species diversity in seabirds: A case study of Pterodroma petrels from a Pacific island. Biodivers. Conserv. 29, 2361–2375 (2020).

    Article 

    Google Scholar 

  • Ruzicka, R. & Gleason, D. F. Sponge community structure and anti-predator defenses on temperate reefs of the South Atlantic Bight. J. Exp. Mar. Biol. Ecol. 380(1–2), 36–46 (2009).

    Article 

    Google Scholar 

  • Loh, T. L. & Pawlik, J. R. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc. Natl. Acad. Sci. U.S.A. 111(11), 4151–4156 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wulff, J. L. Targeted predator defenses of sponges shape community organization and tropical marine ecosystem function. Ecol. Monogr. 91(2), e01438 (2021).

    Article 

    Google Scholar 

  • Coppock, A. G., Kingsford, M. J., Battershill, C. N. & Jones, G. P. Significance of fish–sponge interactions in coral reef ecosystems. Coral Reefs 41, 1285–1308 (2022).

    Article 

    Google Scholar 

  • Baumbach, D. S., Zhang, R., Hayes, C. T., Wright, M. K. & Dunbar, S. G. Strategic foraging: Understanding hawksbill (Eretmochelys imbricata) prey item energy values and distribution within a marine protected area. Mar. Ecol. 00, e12703 (2022).

    CAS 

    Google Scholar 

  • Guida, V. G. Sponge predation in the oyster reef community as demonstrated with Cliona celata Grant. J. Exp. Mar. Biol. Ecol. 25(2), 109–122 (1976).

    Article 

    Google Scholar 

  • Verdín, P. C. J., Carballo, J. L. & Camacho, M. L. A qualitative assessment of sponge-feeding organisms from the Mexican Pacific coast. Open Mar. Biol. J. 4, 39–46 (2010).

    Article 

    Google Scholar 

  • Márquez, J. C. & Zea, S. Parrotfish mediation in coral mortality and bioerosion by the encrusting, excavating sponge Cliona tenuis. Mar. Ecol. 33(4), 417–426 (2012).

    Article 
    ADS 

    Google Scholar 

  • González-Rivero, M., Ferrari, R., Schönberg, C. H. L. & Mumby, P. J. Impacts of macroalgal competition and parrotfish predation on the growth of a common bioeroding sponge. Mar. Ecol. Prog. Ser. 444, 133–142 (2012).

    Article 
    ADS 

    Google Scholar 

  • von Brandis, R. G., Mortimer, J. A., Reilly, B. K., van Soest, R. W. M. & Branch, G. M. Diet composition of hawksbill turtles (Eretmochelys imbricata) in the Republic of Seychelles. Western Indian Ocean J. Mar. Sci. 13(1), 81–91 (2014).

    Google Scholar 

  • Mortimer, C., Dunn, M., Haris, A., Jompa, J. & Bell, J. Estimates of sponge consumption rates on an Indo-Pacific reef. Mar. Ecol. Prog. Ser. 672, 123–140 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hoppe, W. F. Growth, regeneration and predation in three species of large coral reef sponges. Mar. Ecol. Prog. Ser. 50(12), 117–125 (1988).

    Article 
    ADS 

    Google Scholar 

  • Bell, J. J. Regeneration rates of a sublittoral demosponge. J. Mar. Biol. Assoc. U.K. 82(1), 169–170 (2002).

    Article 

    Google Scholar 

  • Wu, Y.-C. et al. Opisthobranch grazing results in mobilisation of spherulous cells and re-allocation of secondary metabolites in the sponge Aplysina aerophoba. Sci. Rep. 10, 21934 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wu, Y.-C., Franzenburg, S., Ribes, M. & Pita, L. Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer. Sci. Rep. 12, 1307 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • González-Rivero, M. et al. Life-history traits of a common Caribbean coral-excavating sponge, Cliona tenuis (Porifera: Hadromerida). J. Nat. Hist. 47(45–46), 1–20 (2013).

    Google Scholar 

  • Chaves-Fonnegra, A., Maldonado, M., Blackwelder, P. & Lopez, J. V. Asynchronous reproduction and multi-spawning in the coral-excavating sponge Cliona delitrix. J. Mar. Biol. Assoc. U.K. 96(2), 515–528 (2015).

    Article 

    Google Scholar 

  • Bautista-Guerrero, E., Carballo, J. L. & Maldonado, M. Abundance and reproductive patterns of the excavating sponge Cliona vermifera: A threat to Pacific coral reefs?. Coral Reefs 33, 259–266 (2014).

    Article 
    ADS 

    Google Scholar 

  • Piscitelli, M., Corriero, G., Gaino, E. & Uriz, M.-J. Reproductive cycles of the sympatric excavating sponges Cliona celata and Cliona viridis in the Mediterranean Sea. Invertebr. Biol. 130(1), 1–10 (2011).

    Article 

    Google Scholar 

  • Chaves-Fonnegra, A., Feldheim, K. A., Secord, J. & Lopez, J. V. Population structure and dispersal of the coral-excavating sponge Cliona delitrix. Mol. Ecol. 24(7), 1447–1466 (2015).

    Article 

    Google Scholar 

  • Zilberberg, C., Maldonado, M. & Solé-Cava, A. Assessment of the relative contribution of asexual propagation in a population of the coral-excavating sponge Cliona delitrix from the Bahamas. Coral Reefs 25, 297–301 (2006).

    Article 
    ADS 

    Google Scholar 

  • Wulff, J. L. Effects of a hurricane on survival and orientation of large erect coral reef sponges. Coral Reefs 14, 55–61 (1995).

    Article 
    ADS 

    Google Scholar 

  • Wilkinson, C. R. & Thompson, J. E. Experimental sponge transplantation provides information on reproduction by fragmentation. Proc. 8th Int. Coral Reef Symp. 2, 1417–1420 (1997).

    CAS 

    Google Scholar 

  • da Silva, R. et al. Assessing the conservation potential of fish and corals in aquariums globally. J. Nat. Conserv. 48, 1–11 (2019).

    Article 

    Google Scholar 

  • Neumann, A. C. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol. Oceanogr. 11(1), 92–108 (1966).

    Article 
    ADS 

    Google Scholar 

  • Rosell, D. & Uriz, M. J. Do associated zooxanthellae and the nature of the substratum affect survival, attachment and growth of Cliona viridis (Porifera: Hadromerida)? An experimental approach. Mar. Biol. 114, 503–507 (1992).

    Article 

    Google Scholar 

  • Ramsby, B. D., Hoogenboom, M. O., Smith, H. A., Whalan, S. & Webster, N. S. The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming. Sci. Rep. 8, 8302 (2018).

    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Carbon sinks and carbon emissions balance of land use transition in Xinjiang, China: differences and compensation

    Identification of potential light deficiency response regulators in endangered species Magnolia sinostellata