in

The rhizospheric bacterial diversity of Fritillaria taipaiensis under single planting pattern over five years

  • Yu, X. L., Ji, H., Wang, C. L. & Li, P. A survey of pharmacological effects of Fritillaria. Chin. Tradit. Herb. Drugs. 31, 313–315 (2000).

    Google Scholar 

  • Wang, D. D. et al. Antitussive, expectorant and anti-inflammatory activities of four alkaloids isolated from bulbus of Fritillaria wabuensis. J. Ethnopharmacol. 139, 189 (2012).

    Article 
    CAS 

    Google Scholar 

  • Tan, S. F. et al. Evaluation on the effect of analgesia and expectorant of aconiti radix cocta in coordination with Fritillaria cirrhosa and Fritillaria thunbergii based on the uniform design method. China J. Chin. Mater. Med. 38, 2706–2713 (2013).

    Google Scholar 

  • Chen, T. Z. & Zhang, M. Suitable technology for production and processing of Fritillaria cirrhosa (ed. Chen, T. Z. & Zhang, M.) 8 (China Medical Science Press, 2018).

  • Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (ed. Zhao, Y. Y. et al.) (China Medical Science Press, 2015).

  • Duan, B. Z. et al. A survey of resource science of Fritillaria taipaiensis. Mod. Chin. Med. 12, 12–14 (2010).

    Google Scholar 

  • Duan, B. Z. et al. Regionalization for growing Fritillaria taipaiensis P Y Li by TCMGIS-II. World Sci. Technol/Modern Tradit. Chin. Med. Mater Med. 12, 486–488 (2012).

    Google Scholar 

  • Jiang, S. Y., Sun, H. B., Qin, J. H., Zhu, W. T. & Sun, H. Functional production regionalization for Fritillariae Cirrhosae Bulbus based on growth and quality suitability assessment. China J. Chin. Mater. Med. 17, 3194–3201 (2016).

    Google Scholar 

  • Gu, W. C., Mu, M. J., Yang, M., Guo, D. Q. & Zhou, N. Correlation analysis between bulb quality and rhizosphere soil factors of Fritillaria taibaiensis. Chin. J. Exp. Tradit. Med. Formulae. 26, 165–177 (2020).

    Google Scholar 

  • Mu, M. J. et al. Correlation between rhizospheric microorganisms distribution and alkaloid content of Fritillaria taipaiensis. China J. Chin. Mater. Med. 11, 2231–2235 (2019).

    Google Scholar 

  • Peng, R., Ma, P., Mo, R. Y. & Sun, N. X. Analysis of the bioactive components from different growth stages of Fritillaria taipaiensis PY Li. Acta Pharm. Sin. B. 3, 167–173 (2013).

    Article 

    Google Scholar 

  • Zhou, X. J., Yang, Y. X., Hu, P., Zhang, M. & Xia, Y. L. Investigation on the resources of Fritillaria taipaiensis. J. Anhui Agric. Sci. 17, 84–85 (2015).

    CAS 

    Google Scholar 

  • Wu, Z. Z. & Wu, C. S. Effects of different fertilization modes on the growth of Fritillaria taipaiensis. Agric. Eng. 6, 153–154 (2016).

    Google Scholar 

  • Nannipieri, P., Kandeler, E., Ruggiero, P., Burns, R. G. & Dick, R. P. Enzymes in the environment: activity, ecology and applications (ed. Nannipieri, P.) (Marcel Dekker, 2002).

  • Sparling, G. P. Biological indicators of soil health (ed. Sparling, G. P.) (CAB International, 1997).

  • Alkorta, I. et al. Soil enzyme activities as biological indicators of soil health. Rev. Environ. Health. 18, 65–73 (2003).

    Article 

    Google Scholar 

  • Lu, L. H. et al. Fungal networks in yield-invigorating and debilitating soils induced by prolonged potato monoculture. Soil. Biol. Biochem. 65, 186–194 (2013).

    Article 
    CAS 

    Google Scholar 

  • Sun, J., Zhang, Q., Zhou, J. & Wei, Q. P. Illumina amplicon sequencing of 16S rRNA Tag reveals bacterial community development in the rhizosphere of apple nurseries at a replant disease site and a new planting site. PLoS ONE 9, e111744 (2014).

    Article 
    ADS 

    Google Scholar 

  • Yao, H. Y., Jiao, X. D. & Wu, F. Z. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant. Soil. 284, 195–203 (2006).

    Article 
    CAS 

    Google Scholar 

  • Lee, S. A. et al. Diferent types of agricultural land use drive distinct soil bacterial communities. Sci. Rep. 10, 1–12 (2020).

    ADS 

    Google Scholar 

  • Chen, M. et al. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut-pathogenic and beneficial fungi were selected. PLoS ONE 7, e40659 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xiong, W. et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing. PLoS ONE 10, e0136946 (2015).

    Article 

    Google Scholar 

  • Zhang, Z. Y., Yang, W. X., Chen, Y. H. & Chen, X. J. Effects of consecutively monocultured Rehmannia glutinosa L. on diversity of fungal community in rhizospheric soil. J. Integr. Agric. 10, 1374–1384 (2011).

    Google Scholar 

  • Zhou, X. & Wu, F. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol. Ecol. 80, 469–478 (2012).

    Article 
    CAS 

    Google Scholar 

  • Mu, M. J. et al. Effect of growth years to the soil enzyme activities and heavy metal residue of Fritillaria taipaiensis P.Y. Li. Environ. Chem. 38, 1966–1972 (2019).

    CAS 

    Google Scholar 

  • Zhou, N. et al. Rhizospheric Fungal diversities and soil biochemical factors of Fritillaria taipaiensis over five cultivation years. Horticulturae. 7(12), 560–574 (2021).

    Article 

    Google Scholar 

  • Cai, L. T., Hu, Z. Y. & Luo, Z. Y. Extraction of total DNA of microbes from tobacco diseased-field soil by SDS-CTAB method. Acta Agric. Jiangxi. 23, 119–121 (2011).

    Google Scholar 

  • Liang, Y. T. et al. Century long fertilization reduces stochasticity controlling grassland microbial community succession. Soil Biol. Biochem. 151, 128–142 (2020).

    Article 

    Google Scholar 

  • Fudou, R. et al. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structural elucidation. J. Antibiot. 54(2), 153–156 (2001).

    Article 
    CAS 

    Google Scholar 

  • Lewin, G. R. et al. Cellulose-enriched microbial communities from leaf-cutter ant (Atta colombica) refuse dumps vary in taxonomic composition and degradation ability. PLoS ONE. 11(3), e0151840 (2016).

    Article 

    Google Scholar 

  • Brewer, T. E., Handley, K. M., Carini, P., Gilbert, J. A. & Fierer, N. Genome reduction in an abundant and ubiquitous soil bacterium Candidatus Udaeobacter copiosus. Nat. Microbiol. 2, 16198 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kalyuzhnaya, M. G., Hristova, K. R., Lidstrom, M. E. & Chistoserdova, L. Characterization of a novel methanol dehydrogenase in representatives of the Burkholderiales: Implication for environmental detection of methylotrophy and evidence for convergent evolution. J. Bacterial. 190, 3817–3823 (2008).

    Article 
    CAS 

    Google Scholar 

  • Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil. Biol. Biochem. 97, 188–198 (2016).

    Article 
    CAS 

    Google Scholar 

  • Yi, X. et al. Microbial community structures and important associations between soil nutrients and the responses of specific taxa to rice-frog cultivation. Front. Microbiol. 6(10), 1752 (2019).

    Article 

    Google Scholar 

  • Makk, J. et al. Arenimonas subflava sp nov., isolated from a drinking water network, and emended description of the genus Arenimonas. Int. J. Syst. Evol. Microbiol. 65, 1915–1921 (2015).

    Article 
    CAS 

    Google Scholar 

  • Maki, K., Mitsuo, S., Masako, I., Shinji, S. & Yoshimi, B. Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 55(5), 2143–2147 (2005).

    Article 

    Google Scholar 

  • Zhao, Y. C. et al. Variation of rhizosphere microbial community in continuous mono-maize seed production. Sci. Rep. 11, 1544 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, J. J. et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil. Biol. Biochem. 70, 113–122 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yin, C. T. et al. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome. 9, 86–103 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ren, H. Y. et al. Effect of two kinds of fertilizers on growth and rhizosphere soil properties of bayberry with decline disease. Plants. 10, 2386–2409 (2021).

    Article 
    CAS 

    Google Scholar 

  • Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U. S. A. 103(3), 626–631 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75(15), 5111–5120 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, B., Liang, C., He, H. B. & Zhang, X. D. Variations in soil microbial communities and residues along an altitude gradient on the northern slope of changbai mountain, China. PLoS ONE. 8(6), e66184 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, Z. X. et al. Effects of continuous cropping years of soybean on the bacterial community structure in black soil. Acta Ecol. Sin. 39(12), 4337–4345 (2019).

    CAS 

    Google Scholar 

  • Jekins, S. N. et al. Actinobacterial community dynamics in long term managed grasslands. Antonie Van Leeuwenhoek 95(4), 319–334 (2009).

    Article 

    Google Scholar 

  • Lauber, C. L., Strickland, M. S., Bradford, M. & Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 40(9), 2407–2415 (2008).

    Article 
    CAS 

    Google Scholar 

  • Lu, K. H., Hu, Z. Y., Liang, J. J. & Zhu, J. Y. Characteristics of rhizosphere microbial community structure of two aquatic plants in eutrophic waters. China Environ. Sci. 30, 1508–1515 (2010).

    CAS 

    Google Scholar 

  • Wang, J. J., Cao, B., Bai, C. C., Zhang, L. L. & Che, L. Potential distribution prediction and suitability evaluation of Fritillaria cirrhosa D. Don based on maxent modeling and GIS. Bull. Bot. Res. 34, 642–649 (2014).

    Google Scholar 

  • Montazer, Z., Najafi, M. B. H. & Levin, B. D. Microbial degradation of low-density polyethylene and synthesis of polyhydroxyalkanoate polymers. Can. J. Microbiol. 65, 224–234 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classifification of soil bacteria. Ecology 88, 1354–1364 (2007).

    Article 

    Google Scholar 

  • Lin, S., Zhuang, J. Q., Chen, T., Zhang, A. J. & Lin, W. X. Microbial diversity in rhizosphere soils of different planting year tea trees: An analysis with phospholipid fatty acid biomarkers. Chin. J. Ecol. 32, 64–71 (2013).

    CAS 

    Google Scholar 

  • Bardgett, R. D., Lovell, R. D., Hobbs, P. J. & Jarvis, C. C. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol. Biochem. 31, 1021–1030 (1999).

    Article 
    CAS 

    Google Scholar 

  • Haynes, K. M., Preston, M. D., McLaughlin, J. W., Webster, K. & Basiliko, N. Dissimilar bacterial and fungal decomposer communities across rich to poor fen peatlands exhibit functional redundancy. Can. J. Soil Sci. 95, 219–230 (2015).

    Article 
    CAS 

    Google Scholar 

  • Ye, W., Li, Y. C., Ye, M., Qian, Y. T. & Dai, W. S. Microbial biodiversity in rhizospheric soil of Torreya grandis ‘Merrillii’relative to cultivation history. Chin. J. Appl. Ecol. 29, 3783–3792 (2018).

    Google Scholar 

  • Shen, Z. Z. et al. Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality. Eur. J. Soil Biol. 57, 1–8 (2013).

    Article 

    Google Scholar 

  • Liu, C. et al. Soil bacterial communities of three types of plants from ecological restoration areas and plant-growth promotional benefits of Microbacterium invictum (strain X-18). Front. Microbiol. 13, 926037 (2022).

    Article 

    Google Scholar 

  • Wang, L. X., Pang, X. Y., Li, N., Qi, K. & Yin, C. Effects of vegetation type, fine and coarse roots on soil microbial communities and enzyme activities in eastern tibetan plateau. Catena 194, 104694 (2020).

    Article 
    CAS 

    Google Scholar 

  • Su, Y. Z., Li, Y. L., Cui, J. Y. & Zhao, W. Z. Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, Northern China. Catena 59(3), 267–278 (2005).

    Article 

    Google Scholar 

  • Wallenstein, M. D., Mcmahon, S. K. & Schimel, J. P. Seasonal variation in enzyme activities and temperature sensitivities in arctic tundra soils. Glob. Chang. Biol. 15(7), 1631–1639 (2009).

    Article 
    ADS 

    Google Scholar 

  • Chang, W. H., Ma, W. W., Li, G., Xu, G. R. & Song, L. C. Temporal and spatial distribution characteristics of soil urease and protease activities in different degraded gradients of Gahai wetland. Soils. 54(3), 524–531 (2022).

    Google Scholar 

  • Zhang, Y., Liu, C., Song, A., Jin, Z. J. & Li, Q. Relationship between soil physicochemical properties and soil enzyme activities in huixian karst wetland system based on canonica correspondence analysis. Carsol. Sin. 35(1), 11–18 (2016).

    Google Scholar 

  • Zhang, Y., Ke, X., Zhang, G. C. & Guan, L. Z. Effects of acetochlor on soil urease kinetic characteristics. Plant Nutr. Fert. Sci. 18(4), 915–921 (2012).

    CAS 

    Google Scholar 

  • Wang, H. Y., Ma, P. & Peng, R. Quantitative determination of peimisin and total alkaloids in Fritillaria taipaiensis of different growing stage. J. Chin. Med. Mater. 34, 1034–1037 (2011).

    Google Scholar 

  • Gershenzon, J. Metabolic costs of terpenoid accumulation in high plants. J. Chem. Ecol. 20, 1281–1328 (1994).

    Article 
    CAS 

    Google Scholar 

  • Pramanik, M. H. R., Nagai, M., Asao, T. & Matsui, Y. Effect of temperature and hotoperiod on the phytotoxic root exudate of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol. 28, 1953–1967 (2000).

    Article 

    Google Scholar 

  • Bertin, C., Yang, X. & Weston, L. A. The role of root exudates and allelochemicals in rhizosphere. Plant Soil. 256, 67–83 (2003).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Z. Y. & Lin, W. X. Continuous cropping obstacle and allelopathic autotoxicity of medicinal plants. Chin. J. Eco-Agric. 17, 189–196 (2019).

    Article 

    Google Scholar 

  • Huang, Y. Q. et al. Effects of vanillic acid on seed germination, seedling growth and rhizosphere microflora of peanut. Sci. Agric. Sin. 9, 1735–1745 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Low genetic diversity and predation threaten a rediscovered marine sponge

    Communities' awareness of afforestation and its contribution to the conservation of lizards in Dodoma, Tanzania