in

Insights from the Niger Delta Region, Nigeria on the impacts of urban pollution on the functional organisation of Afrotropical macroinvertebrates

  • De Jesús-Crespo, R. & Ramírez, A. Effects of urbanisation on stream physicochemistry and macroinvertebrate assemblages in a tropical urban watershed in Puerto Rico. J. N. Am. Benthol. Soc. 30, 739. https://doi.org/10.1899/10-081.1 (2011).

    Article 

    Google Scholar 

  • Start, D., Barbour, M. A. & Bonner, C. Urbanisation reshapes a food web. J. Anim. Ecol. 89(3), 808–816. https://doi.org/10.1111/1365-2656.131366 (2020).

    Article 

    Google Scholar 

  • Liu, Y. et al. Analysis of the influence paths of land use and landscape pattern on organic matter decomposition in river ecosystems: Focusing on microbial groups. Sci. Total Environ. 95(14), 106408. https://doi.org/10.1016/j.scitotenv.2022.152999 (2022).

    Article 
    CAS 

    Google Scholar 

  • Vörösmarty, C. J., Mcintyre, P. B., Gessner, M. O., Dudgeon, D. & Prusevich, A. Global threats to human water security and river biodiversity. Nature 467(7315), 555–561. https://doi.org/10.1038/nature09440 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Weideman, E. A., Perold, V., Arnold, G. & Ryan, P. G. Quantifying changes in litter loads in urban stormwater runoff from Cape Town, South Africa, over the last two decades. Sci. Total Environ. 724, 138310. https://doi.org/10.1016/j.scitotenv.2020.138310 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Charters, F. J., Cochrane, T. A. & O’Sullivan, A. D. The influence of urban surface type and characteristics on runoff water quality. Sci. Total Environ. 755, 142470. https://doi.org/10.1016/j.scitotenv.2020.142470 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Espinoza-Toledo, A., Mendoza-Carranza, M., Castillo, M. M., Barba-Macías, E. & Capps, K. A. Taxonomic and functional responses of macroinvertebrates to riparian forest conversion in tropical streams. Sci. Total Environ. 757, 143972. https://doi.org/10.1016/j.scitotenv.2020.143972 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Akamagwuna, C. F., Ntloko, P., Edegbene, A. O. & Odume, O. N. Are Ephemeroptera, Plecoptera and Trichoptera traits reliable indicators of semi- urban pollution in the Tsitsa River, Eastern Cape Province of South Africa ? Environ. Monit. Assess. 193, 1–15. https://doi.org/10.1007/s10661-021-09093-z (2021).

    Article 
    CAS 

    Google Scholar 

  • Edegbene, A. O., Odume, O. N., Arimoro, F. O. & Keke, U. N. Identifying and classifying macroinvertebrate indicator signature traits and ecological preferences along urban pollution gradient in the Niger Delta. Environ. Pollut. 281, 117076. https://doi.org/10.1016/j.envpol.2021.117076 (2021).

    Article 
    CAS 

    Google Scholar 

  • Odume, O. N. Searching for urban pollution signature and sensitive macroinvertebrate traits and ecological preferences in a river in the Eastern Cape of South Africa. Ecol. Indic. 108, 105759. https://doi.org/10.1016/j.ecolind.2019.105759 (2020).

    Article 
    CAS 

    Google Scholar 

  • World Bank Group. e-Conomy Africa 2020 Africa’s $180 billion Internet economy future. In E-Conomy Africa 2020 (2020).

  • Petersen, C. R., Jovanovic, N. Z., Grenfell, M. C., Oberholster, P. J. & Cheng, P. Responses of aquatic communities to physical and chemical parameters in agriculturally impacted coastal river systems. Hydrobiologia 813(1), 157–175. https://doi.org/10.1007/s10750-018-3518-y (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhao, Q., Guo, F., Zhang, Y., Yang, Z. & Ma, S. Effects of secondary salinisation on macroinvertebrate functional traits in surface mining-contaminated streams, and recovery potential. Sci. Total Environ. 640–641, 1088–1097. https://doi.org/10.1016/j.scitotenv.2018.05.347 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Trophic structure in response to land use in subtropical streams. Ecol. Indic. 127, 107746. https://doi.org/10.1016/j.ecolind.2021.107746 (2021).

    Article 
    CAS 

    Google Scholar 

  • David, A. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122 (2004).

    Article 

    Google Scholar 

  • Monk, W. A., Wood, P. J., Hannah, D. M. & Wilson, D. A. Macroinvertebrate community response to inter-annual and regional river flow regime dynamics. River Res. Appl. 24(70), 988–1001 (2008).

    Article 

    Google Scholar 

  • Fitzgerald, D. B., Winemiller, K. O., SabajPerez, M. H. & Sousa, L. M. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98, 21–31. https://doi.org/10.1002/ecy.1616 (2017).

    Article 

    Google Scholar 

  • Rosenberg, D. M. & Resh, V. H. Freshwater Biomonitoring and Benthic Macroinvertebrates (Chapman and Hall, 1993).

    Google Scholar 

  • Jiang, X., Xiong, J., Xie, Z. & Chen, Y. Longitudinal patterns of macroinvertebrate functional feeding groups in a Chinese river system: A test for river continuum concept (RCC). Quatern. Int. 244(2), 289–295. https://doi.org/10.1016/j.quaint.2010.08.015 (2011).

    Article 

    Google Scholar 

  • Sun, L. Q. et al. Food web structure and ecosystem attributes of integrated multi-trophic aquaculture waters in Sanggou Bay. Aquac. Rep. 16, 100279. https://doi.org/10.1016/j.aqrep.2020.100279 (2020).

    Article 

    Google Scholar 

  • Covich, A. P., Palmer, M. A. & Crowl, T. A. The role of benthic invertebrate species in freshwater ecosystems. Bioscience 49, 119–127 (1999).

    Article 

    Google Scholar 

  • Hladyz, S., Kajsa, Å., Paul, S. G. & Guy, W. Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J. Appl. Ecol. 48(2), 443–452. https://doi.org/10.1111/j.1365-2664.2010.01924.x (2011).

    Article 

    Google Scholar 

  • Crowl, T. A. & Covich, A. P. Predator-induced life history shifts in a freshwater snail. Science 247, 949–951 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fierro, P. et al. Effects of local land-use on riparian vegetation, water quality, and the functional organisation of macroinvertebrate assemblages. Sci. Total Environ. 609, 724–734. https://doi.org/10.1016/j.scitotenv.2017.07.197 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lenat, D. R. & Barbour, M. T. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring: Rapid bioassessment. Biol. Monit. Aquat. Syst. 1, 187–215 (1994).

    Google Scholar 

  • Edegbene, A., Arimoro, F. O. & Odume, O. N. How does urban pollution influence macroinvertebrate traits in forested riverine systems? Water 1, 2–17. https://doi.org/10.3390/w12113111 (2020).

    Article 

    Google Scholar 

  • Walsh, C. J. et al. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Renthol. Soc. 24(3), 706–723. https://doi.org/10.1899/04-028.1 (2005).

    Article 

    Google Scholar 

  • Bêche, L. A., Eric, P. M. & Vincent, H. R. Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two mediterranean-climate streams in California, USA. Freshw. Biol. 51(1), 56–75. https://doi.org/10.1111/j.1365-2427.2005.01473.x (2006).

    Article 

    Google Scholar 

  • Sitati, A., Raburu, P. O., Yegon, M. J. & Masese, F. O. Land-use influence on the functional organization of Afrotropical macroinvertebrate assemblages. Limnologica 88, 125875. https://doi.org/10.1016/j.limno.2021.125875 (2021).

    Article 
    CAS 

    Google Scholar 

  • Álvarez-Cabria, M. J. & José, A. J. Spatial and seasonal variability of macroinvertebrate metrics: Do macroinvertebrate communities track river health? Ecol. Indic. 10(2), 370–379. https://doi.org/10.1016/j.ecolind.2009.06.018 (2010).

    Article 
    CAS 

    Google Scholar 

  • Masese, F. O. et al. Litter processing and shredder distribution as indicators of riparian and catchment influences on ecological health of tropical streams. Ecol. Indic. 46, 23–37. https://doi.org/10.1016/j.ecolind.2014.05.032 (2014).

    Article 

    Google Scholar 

  • Merritt, R. & Cummins, K. An Introduction to the Aquatic Insects of North America 1996–862 (Kendall Hunt Publishing Co, 1995).

    Google Scholar 

  • Merritt, R. W., Fenoglio, S. & Cummins, K. W. Promoting a functional macroinvertebrate approach in the biomonitoring of Italian lotic systems. J. Limnol. https://doi.org/10.4081/jlimnol.2016.1502 (2016).

    Article 

    Google Scholar 

  • Edegbene, A.O., Akamagwuna, F.C., Arimoro, F.O., Akumabor, E.C. & Kaine, E.A. Effects of urban-agricultural land-use on Afrotropical macroinvertebrate functional feeding groups in selected rivers in the Niger Delta Region, Nigeria. Hydrobiologia 849, 4857–4869. https://doi.org/10.1007/s10750-022-05034-0 (2022).

    Article 
    CAS 

    Google Scholar 

  • Masese, F. O. et al. Macroinvertebrate functional feeding groups in Kenyan highland streams: Evidence for a diverse shredder guild. Freshw. Sci. 33(2), 435–450. https://doi.org/10.1086/675681 (2014).

    Article 

    Google Scholar 

  • Moyo, S. & Richoux, N. B. Macroinvertebrate functional organisation along the longitudinal Gradient of an austral temperate river. Afr. Zool. 52(3), 125–136. https://doi.org/10.1080/15627020.2017.1354721 (2017).

    Article 

    Google Scholar 

  • Vannote, R. L. et al. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).

    Article 

    Google Scholar 

  • Ding, J. et al. Impacts of land use on surface water quality in a subtropical river basin: A case study of the Dongjiang River Basin, Southeastern China. Water 7(8), 4427–4445. https://doi.org/10.3390/w7084427 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Miserendino, M. L. & Masi, C. I. The effects of land use on environmental features and functional organisation of macroinvertebrate communities in Patagonian low order streams. Ecol. Indic. 10(2), 311–319. https://doi.org/10.1016/j.ecolind.2009.06.008 (2010).

    Article 
    CAS 

    Google Scholar 

  • Solis, M., Arias, M., Fanelli, S., Bonetto, C. & Mugni, H. Agrochemicals’ effects on functional feeding groups of macroinvertebrates in Pampas streams. Ecol. Indic. 101, 373–379. https://doi.org/10.1016/j.ecolind.2019.01.036 (2019).

    Article 
    CAS 

    Google Scholar 

  • Mangadze, T., Wasserman, R., Froneman, W. & Dalu, T. Macroinvertebrate functional feeding group alterations in response to habitat degradation of headwater Austral streams. Sci. Total Environ. 695, 133910. https://doi.org/10.1016/j.scitotenv.2019.133910 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Akamagwuna, F. C. & Odume, O. N. Ephemeroptera, Plecoptera and Trichoptera (EPT) functional feeding group responses to fine grain sediment stress in a river in the Eastern Cape, South Africa. Environ. Monit. Assess. 2, 1–11 (2020).

    Google Scholar 

  • Iwegbue, C. M. A. et al. Polycyclic aromatic hydrocarbons (PAHs) in surficial sediments from selected rivers in the western Niger Delta of Nigeria: Spatial distribution, sources, and ecological and human health risks. Mar. Pollut. Bull. 167, 112351. https://doi.org/10.1016/j.marpolbul.2021.112351 (2021).

    Article 
    CAS 

    Google Scholar 

  • Arimoro, F. O., Abubakar, M. D., Obi-iyeke, G. E. & Keke, U. N. Environmental and sustainability indicators achieving sustainable river water quality for rural dwellers by prioritising the conservation of macroinvertebrates biodiversity in two Afrotropical streams. Environ. Sustain. Indic. 10, 100103. https://doi.org/10.1016/j.indic.2021.100103 (2021).

    Article 

    Google Scholar 

  • Zabbey, N., Erondu, E. S. & Hart, A. I. Nigeria and the prospect of shrimp farming: Critical issues. Livestock Res. Rural Dev. 22, 11 (2010).

    Google Scholar 

  • Edegbene, A. O., Arimoro, F. O. & Odume, O. N. Developing and applying a macroinvertebrate-based multimetric index for urban rivers in the Niger Delta, Nigeria. Ecol. Evol. 9(22), 12869–12885. https://doi.org/10.1002/ece3.5769 (2019).

    Article 

    Google Scholar 

  • Iwegbue, C. M. A. et al. Distribution, sources and ecological risks of metals in surficial sediments of the Forcados River and its Estuary, Niger Delta, Nigeria. Environ. Earth Sci. 77(6), 1–18. https://doi.org/10.1007/s12665-018-7344-3 (2018).

    Article 
    CAS 

    Google Scholar 

  • Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K. & Norris, R. H. Setting expectations for the ecological condition of running waters: The concept of reference condition. Ecol. Appl. 16, 1267–1276 (2006).

    Article 

    Google Scholar 

  • Whittier, T. R. et al. A structured approach for developing indices of biotic integrity: Three examples from streams and rivers in the western USA. Trans. Am. Fish. Soc. 136, 718–735 (2007).

    Article 

    Google Scholar 

  • APHA. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, 1995).

    Google Scholar 

  • Dickens, C. W. & Graham, P. M. The South African scoring system (SASS) Version 5 rapid bioassessment method for Rivers. Afr. J. Aquat. Sci. 27(1), 1–10. https://doi.org/10.2989/16085914.2002.9626569 (2002).

    Article 

    Google Scholar 

  • Day, J. A., & de Moor, I. J. Guides to the freshwater invertebrates of southern Africa. In Volume 6: Arachnida and Mollusca (Araneae, Water Mites and Mollusca). Water Research Commision, 6. WRC Report No. TT 182/02 (2002).

  • De Moor, I. J., Day, J. A. & De Moor, F. C. Guides to the freshwater invertebrates of southern Africa. In Volume 8: Insecta II: Hemiptera, Megaloptera, Neuroptera, Trichoptera and Lepidoptera. Water Research Commision, 8 (2003).

  • Merrit, R. W. et al. An Introduction to the Aquatic Insects of North America 4th edn. (Kendall Hunt Publishing Company, 2008).

    Google Scholar 

  • Cummins, K. W., Merritt, R. W. & Andrade, P. C. N. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in South Brazil. Stud. Neotrop. Fauna Environ. 40(1), 69–89. https://doi.org/10.1080/01650520400025720 (2005).

    Article 

    Google Scholar 

  • Palmer, C. G. Benthic Assemblage Structure, and the Feeding Biology of Sixteen Macro Invertebrate Taxa from the Buffalo River, Eastern Cape, South Africa. Rhodes University, Ph.D. thesis (1991).

  • Palmer, C. G., Maart, B., Palmer, A. R. & O’keeffe, J. H. An assessment of macroinvertebrate functional feeding groups as water quality indicators in the Buffalo River, eastern Cape Province, South Africa. Hydrobiologia 318, 153–164 (1996).

    Article 

    Google Scholar 

  • Palmer, C. G. & O’Keeffe, J. H. O. Feeding patterns of four macroinvertebrate taxa in the headwaters of the Buffalo River, Eastern Cape. Hydrobiologia 228, 157–173 (1992).

    Article 

    Google Scholar 

  • Gayraud, S. & Michel, P. Influence of bed-sediment features on the interstitial habitat available for macroinvertebrates in 15 French streams. Int. Rev. Hydrobiol. 88(1), 77–93. https://doi.org/10.1002/iroh.200390007 (2003).

    Article 

    Google Scholar 

  • Beketov, M. A. et al. SPEAR indicates pesticide effects in streams—Comparative use of species- and family-level biomonitoring data. Environ. Pollut. 157, 1841–1848. https://doi.org/10.1016/j.envpol.2009.01.021 (2009).

    Article 
    CAS 

    Google Scholar 

  • Anderson, M., Gorley, R. N. & Clarke, K. R. PERMANOVA + for PRIMER user manual. Primer-E Ltd 1(1), 218 (2008).

    Google Scholar 

  • Dolédec, S., Chessel, D., ter Braak, C. J. F. & Champely, S. Matching species traits to environmental variables: A new three-table ordination method. Environ. Ecol. Stat. 3(2), 143–166. https://doi.org/10.1007/BF02427859 (1996).

    Article 

    Google Scholar 

  • Juvigny-Khenafou, N. P. D. et al. Impacts of multiple anthropogenic stressors on stream macroinvertebrate community composition and functional diversity. Ecol. Evol. 11(1), 133–152. https://doi.org/10.1002/ece3.6979 (2021).

    Article 

    Google Scholar 

  • Dray, P. S. et al. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95(1), 14–21 (2014).

    Article 

    Google Scholar 

  • R Core Team, E. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • Lubanga, H. L., Manyala, J. O., Sitati, A., Yegon, M. J. & Masese, F. O. Spatial variability in water quality and macroinvertebrate assemblages across a disturbance gradient in the Mara River. Ecohydrol. Hydrobiol. https://doi.org/10.1016/j.ecohyd.2021.03.001 (2021).

    Article 

    Google Scholar 

  • Arimoro, F. O. & Ikomi, R. B. Ecological integrity of upper Warri River, Niger Delta using aquatic insects as bioindicators. Ecol. Indic. 9(3), 455–461. https://doi.org/10.1016/j.ecolind.2008.06.006 (2009).

    Article 
    CAS 

    Google Scholar 

  • Arimoro, F. O., Odume, O. N., Uhunoma, S. I. & Edegbene, A. O. Anthropogenic impact on water chemistry and benthic macroinvertebrate associated changes in a southern Nigeria stream. Environ. Monit. Assess. 187(2), 1–14 (2015).

    Article 
    CAS 

    Google Scholar 

  • Keke, U. N. et al. Macroinvertebrate communities and physicochemical characteristics along an anthropogenic stress gradient in a southern Nigeria stream: Implications for ecological restoration. Environ. Sustain. Indic. https://doi.org/10.1016/j.indic.2021.100157 (2021).

    Article 

    Google Scholar 

  • Edegbene, A. O. et al. A macroinvertebrate-based multimetric index for assessing ecological condition of forested stream sites draining Nigerian urbanizing landscapes. Sustainability 14, 11289. https://doi.org/10.3390/su141811289 (2022).

    Article 

    Google Scholar 

  • Matemilola, S., Adedeji, O. H. & Enoguanbhor, E. C. Land use/land cover change in petroleum-producing regions of Nigeria. In The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem (eds Matemilola, S. et al.) (Elsevier Inc., 2018).

    Google Scholar 

  • Ukhurebor, K. E. et al. Environmental implications of petroleum spillages in the Niger Delta region of Nigeria: A review. J. Environ. Manag. 293, 112872. https://doi.org/10.1016/j.jenvman.2021.112872 (2021).

    Article 
    CAS 

    Google Scholar 

  • Masese, F. O. & Raburu, P. O. Improving the performance of the EPT Index to accommodate multiple stressors in Afrotropical streams. Afr. J. Aquat. Sci. 42(3), 219–233. https://doi.org/10.2989/16085914.2017.1392282 (2017).

    Article 

    Google Scholar 

  • Akamagwuna, F. C. Application of Macroinvertebrate-Based Biomonitoring and Stable Isotopes for Assessing the Effects of Agricultural Land-Use on River Ecosystem Structure and Function in the Kat River, Eastern Cape, South Africa, 4 (Rhodes University, 2021).

    Google Scholar 

  • Yang, F. et al. Application of stable isotopes to the bioaccumulation and trophic transfer of arsenic in aquatic organisms around a closed realgar mine. Sci. Total Environ. 726, 138550. https://doi.org/10.1016/j.scitotenv.2020.138550 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Minaya, V., Mcclain, M. E., Moog, O., Omengo, F. & Singer, G. A. Scale-dependent effects of rural activities on benthic macroinvertebrates and physico-chemical characteristics in headwater streams of the Mara River, Kenya. Ecol. Indic. 32, 116–122. https://doi.org/10.1016/j.ecolind.2013.03.011 (2013).

    Article 
    CAS 

    Google Scholar 

  • Nelson Mwaijengo, G., Msigwa, A., Njau, K. N., Brendonck, L. & Vanschoenwinkel, B. Where does land use matter most? Contrasting land use effects on river quality at different spatial scales. Sci. Total Environ. 715, 134825. https://doi.org/10.1016/j.scitotenv.2019.134825 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Moyo, S. & Richoux, N. B. The relative importance of autochthony along the longitudinal gradient of a small South African river influenced by agricultural activities. Food Webs 15, 1–12. https://doi.org/10.1016/j.fooweb.2018.e00082 (2018).

    Article 

    Google Scholar 

  • Jones, I., Growns, I., Arnold, A., McCall, S. & Bowes, M. The effects of increased flow and fine sediment on hyporheic invertebrates and nutrients in stream mesocosms. Freshw. Biol. 60(4), 813–826. https://doi.org/10.1111/fwb.1253664 (2015).

    Article 
    CAS 

    Google Scholar 

  • Krynak, E. M. & Yates, A. G. Benthic invertebrates taxonomic and trait associations with land use intensively managed watershed: Implications for indicator identification. Ecol. Ind. 93, 1050–1059 (2018).

    Article 

    Google Scholar 

  • Kuzmanovic, M. et al. Environmental stressors as driver of the trait composition of benthic macroinvertebrates assemblages in polluted Iberian rivers. Environ. Res. 156, 485–493 (2017).

    Article 
    CAS 

    Google Scholar 

  • Dalu, T. et al. Benthic diatom-based indices and isotopic biomonitoring of nitrogen pollution in a warm temperate Austral river system. Sci. Total Environ. 748, 142452. https://doi.org/10.1016/j.scitotenv.2020.142452 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tomanova, S., Goitia, E. & Helesˇic, J. H. Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia 556(3), 251–264. https://doi.org/10.1007/s10750-005-1255-5 (2006).

    Article 

    Google Scholar 

  • da Conceição, A. A., Albertoni, E. F., Milesi, S. V. & Hepp, L. U. Influence of anthropic impacts on the functional structure of aquatic invertebrates in subtropical wetlands. Wetlands. https://doi.org/10.1007/s13157-020-01317-1 (2020).

    Article 

    Google Scholar 

  • De, R. B. Effects of forest conversion on the assemblages’ structure of aquatic insects in subtropical regions. Rev. Bras. Entomol. 59(1), 43–49. https://doi.org/10.1016/j.rbe.2015.02.005 (2015).

    Article 
    ADS 

    Google Scholar 

  • Cheshire, K., Boyero, L. & Pearson, R. G. Food webs in tropical Austrian streams: Shredders are not scarce. Freshw. Biol. https://doi.org/10.1111/j.1365-2427.2005.01355-x (2005).

    Article 

    Google Scholar 

  • Camacho, R., Boyero, L., Cornejo, A., Ibáñez, A. & Pearson, R. G. Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica 41, 625–632 (2009).

    Article 

    Google Scholar 

  • Boyero, L., Ramírez, A., Dudgeon, D. & Pearson, R. G. Are tropical streams really different? J. N. Am. Benthol. Soc. 28, 397–403 (2009).

    Article 

    Google Scholar 

  • Ferreira, V. & Chauvet, E. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob. Change Biol. 17(1), 551–564. https://doi.org/10.1111/j.1365-2486.2010.02185.x (2011).

    Article 
    ADS 

    Google Scholar 

  • Whiles, M. R. & Wallace, J. B. Leaf litter decomposition and macroinvertebrate communities in headwater streams draining pine and hardwood catchments. Hydrobiologia 353, 107–119 (1997).

    Article 

    Google Scholar 

  • Foucreau, N., Piscart, C., Puijalon, S. & Hervant, F. Effects of rising temperature on a functional process: Consumption and digestion of leaf litter by a freshwater shredder. Fundam. Appl. Limnol. 187(4), 295–306. https://doi.org/10.1127/fal/2016/0841 (2016).

    Article 

    Google Scholar 

  • Poff, N. L. et al. Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships. J. N. Am. Benthol. Soc. 25(4), 730–755 (2006).

    Article 

    Google Scholar 

  • Menezes, S., Baird, D. J. & Soares, A. M. V. M. Beyond taxonomy: A review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J. Appl. Ecol. 47(4), 711–719. https://doi.org/10.1111/j.1365-2664.2010.01819.x (2010).

    Article 

    Google Scholar 

  • Verberk, W. C. E. P., van Noordwijk, C. G. E. & Hildrew, A. G. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshw. Sci. 32(2), 531–547. https://doi.org/10.1899/12-092.1 (2013).

    Article 

    Google Scholar 

  • Usseglio-Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. Biomonitoring through biological traits of benthic macroinvertebrates: How to use species trait databases? Hydrobiologia 423, 153–162 (2000).

    Article 

    Google Scholar 

  • Kneitel, J. & Chase, J. Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecol. Lett. 7, 69–80 (2004).

    Article 

    Google Scholar 

  • Pilière, A. F. H. et al. On the importance of trait interrelationships for understanding environmental responses of stream macroinvertebrates. Freshw. Biol. 61, 181–194. https://doi.org/10.1111/fwb.12690 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Low genetic diversity and predation threaten a rediscovered marine sponge

    Communities' awareness of afforestation and its contribution to the conservation of lizards in Dodoma, Tanzania