De Jesús-Crespo, R. & Ramírez, A. Effects of urbanisation on stream physicochemistry and macroinvertebrate assemblages in a tropical urban watershed in Puerto Rico. J. N. Am. Benthol. Soc. 30, 739. https://doi.org/10.1899/10-081.1 (2011).
Google Scholar
Start, D., Barbour, M. A. & Bonner, C. Urbanisation reshapes a food web. J. Anim. Ecol. 89(3), 808–816. https://doi.org/10.1111/1365-2656.131366 (2020).
Google Scholar
Liu, Y. et al. Analysis of the influence paths of land use and landscape pattern on organic matter decomposition in river ecosystems: Focusing on microbial groups. Sci. Total Environ. 95(14), 106408. https://doi.org/10.1016/j.scitotenv.2022.152999 (2022).
Google Scholar
Vörösmarty, C. J., Mcintyre, P. B., Gessner, M. O., Dudgeon, D. & Prusevich, A. Global threats to human water security and river biodiversity. Nature 467(7315), 555–561. https://doi.org/10.1038/nature09440 (2010).
Google Scholar
Weideman, E. A., Perold, V., Arnold, G. & Ryan, P. G. Quantifying changes in litter loads in urban stormwater runoff from Cape Town, South Africa, over the last two decades. Sci. Total Environ. 724, 138310. https://doi.org/10.1016/j.scitotenv.2020.138310 (2020).
Google Scholar
Charters, F. J., Cochrane, T. A. & O’Sullivan, A. D. The influence of urban surface type and characteristics on runoff water quality. Sci. Total Environ. 755, 142470. https://doi.org/10.1016/j.scitotenv.2020.142470 (2021).
Google Scholar
Espinoza-Toledo, A., Mendoza-Carranza, M., Castillo, M. M., Barba-Macías, E. & Capps, K. A. Taxonomic and functional responses of macroinvertebrates to riparian forest conversion in tropical streams. Sci. Total Environ. 757, 143972. https://doi.org/10.1016/j.scitotenv.2020.143972 (2021).
Google Scholar
Akamagwuna, C. F., Ntloko, P., Edegbene, A. O. & Odume, O. N. Are Ephemeroptera, Plecoptera and Trichoptera traits reliable indicators of semi- urban pollution in the Tsitsa River, Eastern Cape Province of South Africa ? Environ. Monit. Assess. 193, 1–15. https://doi.org/10.1007/s10661-021-09093-z (2021).
Google Scholar
Edegbene, A. O., Odume, O. N., Arimoro, F. O. & Keke, U. N. Identifying and classifying macroinvertebrate indicator signature traits and ecological preferences along urban pollution gradient in the Niger Delta. Environ. Pollut. 281, 117076. https://doi.org/10.1016/j.envpol.2021.117076 (2021).
Google Scholar
Odume, O. N. Searching for urban pollution signature and sensitive macroinvertebrate traits and ecological preferences in a river in the Eastern Cape of South Africa. Ecol. Indic. 108, 105759. https://doi.org/10.1016/j.ecolind.2019.105759 (2020).
Google Scholar
World Bank Group. e-Conomy Africa 2020 Africa’s $180 billion Internet economy future. In E-Conomy Africa 2020 (2020).
Petersen, C. R., Jovanovic, N. Z., Grenfell, M. C., Oberholster, P. J. & Cheng, P. Responses of aquatic communities to physical and chemical parameters in agriculturally impacted coastal river systems. Hydrobiologia 813(1), 157–175. https://doi.org/10.1007/s10750-018-3518-y (2018).
Google Scholar
Zhao, Q., Guo, F., Zhang, Y., Yang, Z. & Ma, S. Effects of secondary salinisation on macroinvertebrate functional traits in surface mining-contaminated streams, and recovery potential. Sci. Total Environ. 640–641, 1088–1097. https://doi.org/10.1016/j.scitotenv.2018.05.347 (2018).
Google Scholar
Wang, Y. et al. Trophic structure in response to land use in subtropical streams. Ecol. Indic. 127, 107746. https://doi.org/10.1016/j.ecolind.2021.107746 (2021).
Google Scholar
David, A. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122 (2004).
Google Scholar
Monk, W. A., Wood, P. J., Hannah, D. M. & Wilson, D. A. Macroinvertebrate community response to inter-annual and regional river flow regime dynamics. River Res. Appl. 24(70), 988–1001 (2008).
Google Scholar
Fitzgerald, D. B., Winemiller, K. O., SabajPerez, M. H. & Sousa, L. M. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98, 21–31. https://doi.org/10.1002/ecy.1616 (2017).
Google Scholar
Rosenberg, D. M. & Resh, V. H. Freshwater Biomonitoring and Benthic Macroinvertebrates (Chapman and Hall, 1993).
Jiang, X., Xiong, J., Xie, Z. & Chen, Y. Longitudinal patterns of macroinvertebrate functional feeding groups in a Chinese river system: A test for river continuum concept (RCC). Quatern. Int. 244(2), 289–295. https://doi.org/10.1016/j.quaint.2010.08.015 (2011).
Google Scholar
Sun, L. Q. et al. Food web structure and ecosystem attributes of integrated multi-trophic aquaculture waters in Sanggou Bay. Aquac. Rep. 16, 100279. https://doi.org/10.1016/j.aqrep.2020.100279 (2020).
Google Scholar
Covich, A. P., Palmer, M. A. & Crowl, T. A. The role of benthic invertebrate species in freshwater ecosystems. Bioscience 49, 119–127 (1999).
Google Scholar
Hladyz, S., Kajsa, Å., Paul, S. G. & Guy, W. Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J. Appl. Ecol. 48(2), 443–452. https://doi.org/10.1111/j.1365-2664.2010.01924.x (2011).
Google Scholar
Crowl, T. A. & Covich, A. P. Predator-induced life history shifts in a freshwater snail. Science 247, 949–951 (1990).
Google Scholar
Fierro, P. et al. Effects of local land-use on riparian vegetation, water quality, and the functional organisation of macroinvertebrate assemblages. Sci. Total Environ. 609, 724–734. https://doi.org/10.1016/j.scitotenv.2017.07.197 (2017).
Google Scholar
Lenat, D. R. & Barbour, M. T. Using benthic macroinvertebrate community structure for rapid, cost-effective, water quality monitoring: Rapid bioassessment. Biol. Monit. Aquat. Syst. 1, 187–215 (1994).
Edegbene, A., Arimoro, F. O. & Odume, O. N. How does urban pollution influence macroinvertebrate traits in forested riverine systems? Water 1, 2–17. https://doi.org/10.3390/w12113111 (2020).
Google Scholar
Walsh, C. J. et al. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Renthol. Soc. 24(3), 706–723. https://doi.org/10.1899/04-028.1 (2005).
Google Scholar
Bêche, L. A., Eric, P. M. & Vincent, H. R. Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two mediterranean-climate streams in California, USA. Freshw. Biol. 51(1), 56–75. https://doi.org/10.1111/j.1365-2427.2005.01473.x (2006).
Google Scholar
Sitati, A., Raburu, P. O., Yegon, M. J. & Masese, F. O. Land-use influence on the functional organization of Afrotropical macroinvertebrate assemblages. Limnologica 88, 125875. https://doi.org/10.1016/j.limno.2021.125875 (2021).
Google Scholar
Álvarez-Cabria, M. J. & José, A. J. Spatial and seasonal variability of macroinvertebrate metrics: Do macroinvertebrate communities track river health? Ecol. Indic. 10(2), 370–379. https://doi.org/10.1016/j.ecolind.2009.06.018 (2010).
Google Scholar
Masese, F. O. et al. Litter processing and shredder distribution as indicators of riparian and catchment influences on ecological health of tropical streams. Ecol. Indic. 46, 23–37. https://doi.org/10.1016/j.ecolind.2014.05.032 (2014).
Google Scholar
Merritt, R. & Cummins, K. An Introduction to the Aquatic Insects of North America 1996–862 (Kendall Hunt Publishing Co, 1995).
Merritt, R. W., Fenoglio, S. & Cummins, K. W. Promoting a functional macroinvertebrate approach in the biomonitoring of Italian lotic systems. J. Limnol. https://doi.org/10.4081/jlimnol.2016.1502 (2016).
Google Scholar
Edegbene, A.O., Akamagwuna, F.C., Arimoro, F.O., Akumabor, E.C. & Kaine, E.A. Effects of urban-agricultural land-use on Afrotropical macroinvertebrate functional feeding groups in selected rivers in the Niger Delta Region, Nigeria. Hydrobiologia 849, 4857–4869. https://doi.org/10.1007/s10750-022-05034-0 (2022).
Google Scholar
Masese, F. O. et al. Macroinvertebrate functional feeding groups in Kenyan highland streams: Evidence for a diverse shredder guild. Freshw. Sci. 33(2), 435–450. https://doi.org/10.1086/675681 (2014).
Google Scholar
Moyo, S. & Richoux, N. B. Macroinvertebrate functional organisation along the longitudinal Gradient of an austral temperate river. Afr. Zool. 52(3), 125–136. https://doi.org/10.1080/15627020.2017.1354721 (2017).
Google Scholar
Vannote, R. L. et al. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).
Google Scholar
Ding, J. et al. Impacts of land use on surface water quality in a subtropical river basin: A case study of the Dongjiang River Basin, Southeastern China. Water 7(8), 4427–4445. https://doi.org/10.3390/w7084427 (2015).
Google Scholar
Miserendino, M. L. & Masi, C. I. The effects of land use on environmental features and functional organisation of macroinvertebrate communities in Patagonian low order streams. Ecol. Indic. 10(2), 311–319. https://doi.org/10.1016/j.ecolind.2009.06.008 (2010).
Google Scholar
Solis, M., Arias, M., Fanelli, S., Bonetto, C. & Mugni, H. Agrochemicals’ effects on functional feeding groups of macroinvertebrates in Pampas streams. Ecol. Indic. 101, 373–379. https://doi.org/10.1016/j.ecolind.2019.01.036 (2019).
Google Scholar
Mangadze, T., Wasserman, R., Froneman, W. & Dalu, T. Macroinvertebrate functional feeding group alterations in response to habitat degradation of headwater Austral streams. Sci. Total Environ. 695, 133910. https://doi.org/10.1016/j.scitotenv.2019.133910 (2019).
Google Scholar
Akamagwuna, F. C. & Odume, O. N. Ephemeroptera, Plecoptera and Trichoptera (EPT) functional feeding group responses to fine grain sediment stress in a river in the Eastern Cape, South Africa. Environ. Monit. Assess. 2, 1–11 (2020).
Iwegbue, C. M. A. et al. Polycyclic aromatic hydrocarbons (PAHs) in surficial sediments from selected rivers in the western Niger Delta of Nigeria: Spatial distribution, sources, and ecological and human health risks. Mar. Pollut. Bull. 167, 112351. https://doi.org/10.1016/j.marpolbul.2021.112351 (2021).
Google Scholar
Arimoro, F. O., Abubakar, M. D., Obi-iyeke, G. E. & Keke, U. N. Environmental and sustainability indicators achieving sustainable river water quality for rural dwellers by prioritising the conservation of macroinvertebrates biodiversity in two Afrotropical streams. Environ. Sustain. Indic. 10, 100103. https://doi.org/10.1016/j.indic.2021.100103 (2021).
Google Scholar
Zabbey, N., Erondu, E. S. & Hart, A. I. Nigeria and the prospect of shrimp farming: Critical issues. Livestock Res. Rural Dev. 22, 11 (2010).
Edegbene, A. O., Arimoro, F. O. & Odume, O. N. Developing and applying a macroinvertebrate-based multimetric index for urban rivers in the Niger Delta, Nigeria. Ecol. Evol. 9(22), 12869–12885. https://doi.org/10.1002/ece3.5769 (2019).
Google Scholar
Iwegbue, C. M. A. et al. Distribution, sources and ecological risks of metals in surficial sediments of the Forcados River and its Estuary, Niger Delta, Nigeria. Environ. Earth Sci. 77(6), 1–18. https://doi.org/10.1007/s12665-018-7344-3 (2018).
Google Scholar
Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K. & Norris, R. H. Setting expectations for the ecological condition of running waters: The concept of reference condition. Ecol. Appl. 16, 1267–1276 (2006).
Google Scholar
Whittier, T. R. et al. A structured approach for developing indices of biotic integrity: Three examples from streams and rivers in the western USA. Trans. Am. Fish. Soc. 136, 718–735 (2007).
Google Scholar
APHA. Standard Methods for the Examination of Water and Wastewater (American Public Health Association, 1995).
Dickens, C. W. & Graham, P. M. The South African scoring system (SASS) Version 5 rapid bioassessment method for Rivers. Afr. J. Aquat. Sci. 27(1), 1–10. https://doi.org/10.2989/16085914.2002.9626569 (2002).
Google Scholar
Day, J. A., & de Moor, I. J. Guides to the freshwater invertebrates of southern Africa. In Volume 6: Arachnida and Mollusca (Araneae, Water Mites and Mollusca). Water Research Commision, 6. WRC Report No. TT 182/02 (2002).
De Moor, I. J., Day, J. A. & De Moor, F. C. Guides to the freshwater invertebrates of southern Africa. In Volume 8: Insecta II: Hemiptera, Megaloptera, Neuroptera, Trichoptera and Lepidoptera. Water Research Commision, 8 (2003).
Merrit, R. W. et al. An Introduction to the Aquatic Insects of North America 4th edn. (Kendall Hunt Publishing Company, 2008).
Cummins, K. W., Merritt, R. W. & Andrade, P. C. N. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in South Brazil. Stud. Neotrop. Fauna Environ. 40(1), 69–89. https://doi.org/10.1080/01650520400025720 (2005).
Google Scholar
Palmer, C. G. Benthic Assemblage Structure, and the Feeding Biology of Sixteen Macro Invertebrate Taxa from the Buffalo River, Eastern Cape, South Africa. Rhodes University, Ph.D. thesis (1991).
Palmer, C. G., Maart, B., Palmer, A. R. & O’keeffe, J. H. An assessment of macroinvertebrate functional feeding groups as water quality indicators in the Buffalo River, eastern Cape Province, South Africa. Hydrobiologia 318, 153–164 (1996).
Google Scholar
Palmer, C. G. & O’Keeffe, J. H. O. Feeding patterns of four macroinvertebrate taxa in the headwaters of the Buffalo River, Eastern Cape. Hydrobiologia 228, 157–173 (1992).
Google Scholar
Gayraud, S. & Michel, P. Influence of bed-sediment features on the interstitial habitat available for macroinvertebrates in 15 French streams. Int. Rev. Hydrobiol. 88(1), 77–93. https://doi.org/10.1002/iroh.200390007 (2003).
Google Scholar
Beketov, M. A. et al. SPEAR indicates pesticide effects in streams—Comparative use of species- and family-level biomonitoring data. Environ. Pollut. 157, 1841–1848. https://doi.org/10.1016/j.envpol.2009.01.021 (2009).
Google Scholar
Anderson, M., Gorley, R. N. & Clarke, K. R. PERMANOVA + for PRIMER user manual. Primer-E Ltd 1(1), 218 (2008).
Dolédec, S., Chessel, D., ter Braak, C. J. F. & Champely, S. Matching species traits to environmental variables: A new three-table ordination method. Environ. Ecol. Stat. 3(2), 143–166. https://doi.org/10.1007/BF02427859 (1996).
Google Scholar
Juvigny-Khenafou, N. P. D. et al. Impacts of multiple anthropogenic stressors on stream macroinvertebrate community composition and functional diversity. Ecol. Evol. 11(1), 133–152. https://doi.org/10.1002/ece3.6979 (2021).
Google Scholar
Dray, P. S. et al. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95(1), 14–21 (2014).
Google Scholar
R Core Team, E. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Lubanga, H. L., Manyala, J. O., Sitati, A., Yegon, M. J. & Masese, F. O. Spatial variability in water quality and macroinvertebrate assemblages across a disturbance gradient in the Mara River. Ecohydrol. Hydrobiol. https://doi.org/10.1016/j.ecohyd.2021.03.001 (2021).
Google Scholar
Arimoro, F. O. & Ikomi, R. B. Ecological integrity of upper Warri River, Niger Delta using aquatic insects as bioindicators. Ecol. Indic. 9(3), 455–461. https://doi.org/10.1016/j.ecolind.2008.06.006 (2009).
Google Scholar
Arimoro, F. O., Odume, O. N., Uhunoma, S. I. & Edegbene, A. O. Anthropogenic impact on water chemistry and benthic macroinvertebrate associated changes in a southern Nigeria stream. Environ. Monit. Assess. 187(2), 1–14 (2015).
Google Scholar
Keke, U. N. et al. Macroinvertebrate communities and physicochemical characteristics along an anthropogenic stress gradient in a southern Nigeria stream: Implications for ecological restoration. Environ. Sustain. Indic. https://doi.org/10.1016/j.indic.2021.100157 (2021).
Google Scholar
Edegbene, A. O. et al. A macroinvertebrate-based multimetric index for assessing ecological condition of forested stream sites draining Nigerian urbanizing landscapes. Sustainability 14, 11289. https://doi.org/10.3390/su141811289 (2022).
Google Scholar
Matemilola, S., Adedeji, O. H. & Enoguanbhor, E. C. Land use/land cover change in petroleum-producing regions of Nigeria. In The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem (eds Matemilola, S. et al.) (Elsevier Inc., 2018).
Ukhurebor, K. E. et al. Environmental implications of petroleum spillages in the Niger Delta region of Nigeria: A review. J. Environ. Manag. 293, 112872. https://doi.org/10.1016/j.jenvman.2021.112872 (2021).
Google Scholar
Masese, F. O. & Raburu, P. O. Improving the performance of the EPT Index to accommodate multiple stressors in Afrotropical streams. Afr. J. Aquat. Sci. 42(3), 219–233. https://doi.org/10.2989/16085914.2017.1392282 (2017).
Google Scholar
Akamagwuna, F. C. Application of Macroinvertebrate-Based Biomonitoring and Stable Isotopes for Assessing the Effects of Agricultural Land-Use on River Ecosystem Structure and Function in the Kat River, Eastern Cape, South Africa, 4 (Rhodes University, 2021).
Yang, F. et al. Application of stable isotopes to the bioaccumulation and trophic transfer of arsenic in aquatic organisms around a closed realgar mine. Sci. Total Environ. 726, 138550. https://doi.org/10.1016/j.scitotenv.2020.138550 (2020).
Google Scholar
Minaya, V., Mcclain, M. E., Moog, O., Omengo, F. & Singer, G. A. Scale-dependent effects of rural activities on benthic macroinvertebrates and physico-chemical characteristics in headwater streams of the Mara River, Kenya. Ecol. Indic. 32, 116–122. https://doi.org/10.1016/j.ecolind.2013.03.011 (2013).
Google Scholar
Nelson Mwaijengo, G., Msigwa, A., Njau, K. N., Brendonck, L. & Vanschoenwinkel, B. Where does land use matter most? Contrasting land use effects on river quality at different spatial scales. Sci. Total Environ. 715, 134825. https://doi.org/10.1016/j.scitotenv.2019.134825 (2020).
Google Scholar
Moyo, S. & Richoux, N. B. The relative importance of autochthony along the longitudinal gradient of a small South African river influenced by agricultural activities. Food Webs 15, 1–12. https://doi.org/10.1016/j.fooweb.2018.e00082 (2018).
Google Scholar
Jones, I., Growns, I., Arnold, A., McCall, S. & Bowes, M. The effects of increased flow and fine sediment on hyporheic invertebrates and nutrients in stream mesocosms. Freshw. Biol. 60(4), 813–826. https://doi.org/10.1111/fwb.1253664 (2015).
Google Scholar
Krynak, E. M. & Yates, A. G. Benthic invertebrates taxonomic and trait associations with land use intensively managed watershed: Implications for indicator identification. Ecol. Ind. 93, 1050–1059 (2018).
Google Scholar
Kuzmanovic, M. et al. Environmental stressors as driver of the trait composition of benthic macroinvertebrates assemblages in polluted Iberian rivers. Environ. Res. 156, 485–493 (2017).
Google Scholar
Dalu, T. et al. Benthic diatom-based indices and isotopic biomonitoring of nitrogen pollution in a warm temperate Austral river system. Sci. Total Environ. 748, 142452. https://doi.org/10.1016/j.scitotenv.2020.142452 (2020).
Google Scholar
Tomanova, S., Goitia, E. & Helesˇic, J. H. Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia 556(3), 251–264. https://doi.org/10.1007/s10750-005-1255-5 (2006).
Google Scholar
da Conceição, A. A., Albertoni, E. F., Milesi, S. V. & Hepp, L. U. Influence of anthropic impacts on the functional structure of aquatic invertebrates in subtropical wetlands. Wetlands. https://doi.org/10.1007/s13157-020-01317-1 (2020).
Google Scholar
De, R. B. Effects of forest conversion on the assemblages’ structure of aquatic insects in subtropical regions. Rev. Bras. Entomol. 59(1), 43–49. https://doi.org/10.1016/j.rbe.2015.02.005 (2015).
Google Scholar
Cheshire, K., Boyero, L. & Pearson, R. G. Food webs in tropical Austrian streams: Shredders are not scarce. Freshw. Biol. https://doi.org/10.1111/j.1365-2427.2005.01355-x (2005).
Google Scholar
Camacho, R., Boyero, L., Cornejo, A., Ibáñez, A. & Pearson, R. G. Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica 41, 625–632 (2009).
Google Scholar
Boyero, L., Ramírez, A., Dudgeon, D. & Pearson, R. G. Are tropical streams really different? J. N. Am. Benthol. Soc. 28, 397–403 (2009).
Google Scholar
Ferreira, V. & Chauvet, E. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Glob. Change Biol. 17(1), 551–564. https://doi.org/10.1111/j.1365-2486.2010.02185.x (2011).
Google Scholar
Whiles, M. R. & Wallace, J. B. Leaf litter decomposition and macroinvertebrate communities in headwater streams draining pine and hardwood catchments. Hydrobiologia 353, 107–119 (1997).
Google Scholar
Foucreau, N., Piscart, C., Puijalon, S. & Hervant, F. Effects of rising temperature on a functional process: Consumption and digestion of leaf litter by a freshwater shredder. Fundam. Appl. Limnol. 187(4), 295–306. https://doi.org/10.1127/fal/2016/0841 (2016).
Google Scholar
Poff, N. L. et al. Functional trait niches of North American lotic insects: Traits-based ecological applications in light of phylogenetic relationships. J. N. Am. Benthol. Soc. 25(4), 730–755 (2006).
Google Scholar
Menezes, S., Baird, D. J. & Soares, A. M. V. M. Beyond taxonomy: A review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J. Appl. Ecol. 47(4), 711–719. https://doi.org/10.1111/j.1365-2664.2010.01819.x (2010).
Google Scholar
Verberk, W. C. E. P., van Noordwijk, C. G. E. & Hildrew, A. G. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshw. Sci. 32(2), 531–547. https://doi.org/10.1899/12-092.1 (2013).
Google Scholar
Usseglio-Polatera, P., Bournaud, M., Richoux, P. & Tachet, H. Biomonitoring through biological traits of benthic macroinvertebrates: How to use species trait databases? Hydrobiologia 423, 153–162 (2000).
Google Scholar
Kneitel, J. & Chase, J. Trade-offs in community ecology: Linking spatial scales and species coexistence. Ecol. Lett. 7, 69–80 (2004).
Google Scholar
Pilière, A. F. H. et al. On the importance of trait interrelationships for understanding environmental responses of stream macroinvertebrates. Freshw. Biol. 61, 181–194. https://doi.org/10.1111/fwb.12690 (2016).
Google Scholar
Source: Ecology - nature.com