in

Protistan epibionts affect prey selectivity patterns and vulnerability to predation in a cyclopoid copepod

  • Wahl, M., Hay, M. E. & Enderlein, P. Effects of epibiosis on consumer–prey interactions. Hydrobiologia 355, 49–59 (1997).

    Article 

    Google Scholar 

  • Fernandez-Leborans, G., Zitzler, K. & Gabilondo, R. Protozoan ciliate epibionts on the freshwater shrimp Caridina (Crustacea, Decapoda, Atyidae) from the Malili lake system on Sulawesi (Indonesia). J. Nat. Hist. 40, 1983–2000 (2006).

    Article 

    Google Scholar 

  • Puckett, G. L. & Carman, K. R. Ciliate epibiont effects on feeding, energy reserves, and sensitivity to hydrocarbon contaminants in an estuarine harpactacoid copepod. Estuaries 25, 372–381 (2002).

    Article 

    Google Scholar 

  • Fernandez-Leborans, G. Epibiosis in Crustacea: an overview. Crustaceana 83, 549–640 (2010).

    Article 

    Google Scholar 

  • Regali-Seleghim, M. H. & Godinho, M. J. Peritrich epibiont protozoans in the zooplankton of a subtropical shallow aquatic ecosystem (Monjolinho Reservoir, São Carlos, Brazil). J Plankton Res. 26, 501–508 (2004).

    Article 

    Google Scholar 

  • Bickel, S. L., Tang, K. W. & Grossart, H. P. Ciliate epibionts associated with crustacean zooplankton in German lakes: distribution, motility, and bacterivory. Front. Microbiol. 3, 1–11 (2012).

    Article 

    Google Scholar 

  • Souissi, A., Souissi, S. & Hwang, J. S. The effect of epibiont ciliates on the behavior and mating success of the copepod Eurytemora affinis. J. Exp. Mar. Biol. Ecol. 445, 38–43. https://doi.org/10.1016/j.jembe.2013.04.002 (2013).

    Article 

    Google Scholar 

  • Willey, R. L., Cantrell, P. A. & Threlkeld, S. T. Epibiotic euglenoid flagellates increase the susceptibility of some zooplankton to fish predation. Limnol. Oceanogr. 35, 952–959 (1990).

    Article 
    ADS 

    Google Scholar 

  • Ólafsdóttir, S. H. & Svavarsson, J. Ciliate (Protozoa) epibionts of deep-water asellote isopods (Crustacea): pattern and diversity. J. Crust. Biol. 22, 607–618 (2002).

    Article 

    Google Scholar 

  • Kumari, S., Kumar, R., Sarkar, U. K. & Das, B. S. Record of epibiont ciliates (Ciliophora: Peritrichia) living on freshwater invertebrates in a floodplain wetland. J. Inland Fish. Soc. India. 53, 210–214. https://doi.org/10.47780/jifsi.52.3.2021 (2021).

    Article 

    Google Scholar 

  • Utz, L. R. P. & Coats, D. W. Spatial and temporal patterns in the occurrence of peritrich ciliates as epibionts on calanoid copepods in the Chesapeake Bay, USA. J. Eukaryot. Microbiol. 52, 236–244 (2005).

    Article 

    Google Scholar 

  • Utz, L. R. P. & Coats, D. W. Telotroch formation, survival and attachment in the epibiotic peritrich Zoothamnium intermedium (Ciliophora, Oligohymenophorea). Invert. Biol. 127, 237–248 (2008).

    Article 

    Google Scholar 

  • Ohtsuka, S., et al. Symbiosis of planktonic copepods and mysids with epibionts and parasites in the Northpacific: diversity and interactions. In New Frontiers in Crustacean Biology, 1–14, Brill (2011).

  • Sługocki, Ł et al. Passenger for millenniums: association between stenothermic microcrustacean and suctorian epibiont – the case of Eurytemora lacustris and Tokophyra sp. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-66730-2 (2020).

    Article 

    Google Scholar 

  • Fernandez-Leborans, G. A review of the species of protozoan epibionts on crustaceans. III. Chonotrich ciliates. Crustaceana 74, 581–607. https://doi.org/10.1163/156854001300228852 (2001).

    Article 

    Google Scholar 

  • Fernandez-Leborans, G. & Tato- Porto, M. L. A review of the species of the protozoan epibionts on crustaceans. I. Peritrich ciliates. Crustaceana 73, 643–683. https://doi.org/10.1163/156854000504705 (2000).

    Article 

    Google Scholar 

  • Utz, L. R. P. & Coats, D. W. The role of motion in the formation of free living stages and attachment of the peritrich epibiont Zoothamnium intermedium (Ciliophora, Peritrichia). Biosciências 13, 69–74 (2005).

    Google Scholar 

  • Pan, Y. et al. Effects of epibiotic diatoms on the productivity of the Calanoid Copepod Acartia tonsa (Dana) in intensive aquaculture systems. Front. Mar. Sci. 8, 2296–7745. https://doi.org/10.3389/fmars.2021.728779 (2021).

    Article 

    Google Scholar 

  • Bickel, S. L., Tang, K. W. & Grossart, H. P. Ciliate epibionts associated with crustacean zooplankton in German lakes: distribution, motility, and bacterivory. Front. Microbiol. 3, 243. https://doi.org/10.3389/fmicb.2012.00243 (2012).

    Article 

    Google Scholar 

  • De Domitrovic, Y. Z. et al. Epibiont algae on planktic micro-crustaceans from a subtropical shallow lake (Argentina). Algol. Stud. 127, 29–38 (2008).

    Article 

    Google Scholar 

  • Ohman, M. D. Behavioral responses of zooplankton to predation. Bull. Mar. Sci. 43(3), 530–550 (1988).

    Google Scholar 

  • Acevedo-Trejos, E., Marañón, E. & Merico, A. Phytoplankton size diversity and ecosystem function relationships across oceanic regions. Proc. Roy. Soc. B Biol. Sci. 285, 2180621. https://doi.org/10.1098/rspb.2018.0621 (2018).

    Article 

    Google Scholar 

  • Francesco, P. et al. Interacting temperature, nutrients and Zooplankton Grazing Control Phytoplankton size-abundance relationships in eight Swiss Lakes. Front. Microbiol. 10, 1664–2302. https://doi.org/10.3389/fmicb.2019.03155 (2020).

    Article 

    Google Scholar 

  • Carman, K. & Dobbs, F. C. Epibiotic microorganisms on copepods and other marine crustaceans. Microsci. Res. Tech. 37, 116–135 (1997).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/(SICI)1097-0029(19970415)37:23.0.CO;2-M” data-track-action=”article reference” href=”https://doi.org/10.1002%2F%28SICI%291097-0029%2819970415%2937%3A2%3C116%3A%3AAID-JEMT2%3E3.0.CO%3B2-M” aria-label=”Article reference 24″ data-doi=”10.1002/(SICI)1097-0029(19970415)37:23.0.CO;2-M”>Article 

    Google Scholar 

  • Cabral, A. F. et al. Spatial and temporal occurrence of Rhabdostyla cf. chronomi Kahl, 1933 (Ciliophora, Peritrichia) as an epibiont on chironomid larvae in a lotic system in the neotropics. Hydrobiologia 644, 351–359 (2010).

    Article 

    Google Scholar 

  • Burris, Z. & Dam, H. G. Deleterious effects of the ciliate epibiont Zoothamnium sp. On fitness of the copepod Acartia tonsa. J. Plankton Res. 36, 788–799. https://doi.org/10.1093/plankt/fbt137 (2014).

    Article 

    Google Scholar 

  • Yin, Y. et al. Hidden defensive morphology in rotifers: benefits, costs, and fitness consequences. Sci. Rep. 7, 4488. https://doi.org/10.1038/s41598-017-04809-z (2017).

    Article 
    ADS 

    Google Scholar 

  • Gilbert, J. J. & Shröder, T. The ciliate epibiont Epistylis Pygmaeum: selection for zooplankton hosts, reproduction and effect on two rotifers. Freshw. Biol. 48, 878–893 (2003).

    Article 

    Google Scholar 

  • Gilbert, J. J. Morphological and behavioural responses of a rotifer to the predator Asplanchna. J. Plankton Res. 36, 1576–1584. https://doi.org/10.1093/plankt/fbu075 (2014).

    Article 

    Google Scholar 

  • Fernandez-Leborans, G. Epibiosis in crustacea: an overview. Crustaceana 83(5), 549–640. https://doi.org/10.1163/001121610X491059 (2010).

    Article 

    Google Scholar 

  • Iyer, N. & Rao, T. R. Epizoic mode of life in Brachionus rubens Ehrenberg as a deterrent against predation by Asplanchna intermedia Hudson. Hydrobiologia 313, 377–380 (1995).

    Article 

    Google Scholar 

  • Boyan, B. D., Lotz, E. M. & Schwartz, Z. Roughness and hydrophilicity as osteogenic biomimetic surface properties. Tissue Eng. 23, 1479–1489. https://doi.org/10.1089/ten.TEA.2017.0048 (2017).

    Article 

    Google Scholar 

  • Ubuo, E. E. et al. the direct cause of amplified wettability: roughness or surface chemistry?. J. Compos. Sci. 5, 213. https://doi.org/10.3390/jcs5080213 (2021).

    Article 

    Google Scholar 

  • Gilbert, J. J. Attachment behavior in the rotifer Brachionus rubens: induction by Asplanchna and effect on sexual reproduction. Hydrobiologia 844, 9–20. https://doi.org/10.1007/s10750-018-3805-7 (2019).

    Article 

    Google Scholar 

  • Kumar, R. Effect of Mesocyclops thermocyclopoides (Copepoda, Cyclopoida) predation on population dynamics of different prey: a laboratory study. J. Freshwater Ecol. 18, 383–393. https://doi.org/10.1080/02705060.2003.966397 (2003).

    Article 

    Google Scholar 

  • Bulut, H. & Saler, S. Presence of an epibiont Epistylis sp. (Protozoa, Ciliophora) on some zooplankton. Fresenius Environ. Bull. 26(11), 6334–6339 (2017).

    Google Scholar 

  • Threlkeld, S. T., Chiavelli, D. A. & Willey, R. L. The organization of zooplankton epibiont communities. Trends Ecol Evol. 8, 317–321 (1993).

    Article 

    Google Scholar 

  • Iyer, N. & Rao, T. R. Effect of epizoic rotifer Brachionus rubens on the population growth of three cladoceran species. Hydrobiologia 255(256), 325–332 (1993).

    Article 

    Google Scholar 

  • Ramírez-Ballesteros, M., Fernandez-Leborans, G., Mayén-Estrada, R. New record of Epistylis hentscheli (Ciliophora, Peritrichia) as an epibiont of Procambarus (Austrocambarus) sp. (Crustacea, Decapoda) in Chiapas, Mexico. ZooKeys. 782, 1–9. https://doi.org/10.3897/zookeys.782.26417 (2018).

  • Wu, H.X., Feng, M.G. Mass mortality of larval Eriocheir sinensis (Decapoda: Grapsidae) population bred under facility conditions: possible role of Zoothamnium sp. (Peritrichida: Vorticellidae) epiphyte. J. Invertebr. Pathol. 86, 59–60 (2004).

  • Kumar, R. et al. Potential of three aquatic predators to control mosquitoes in the presence of alternative prey: a comparative experimental assessment. Mar. Freshw. Res. 59, 817–835 (2008).

    Article 

    Google Scholar 

  • Kumar, R., Sami Souissi, S. & Hwang, J. S. Vulnerability of carp larvae to copepod predation as a function of larval age and body length. Aquaculture. 338, 274–283 (2012).

  • Rao, T. R. & Kumar, R. Patterns of prey selectivity in the cyclopoid copepod Mesocyclops thermocyclopoides. Aquat. Ecol. 36, 411–424 (2002).

    Article 

    Google Scholar 

  • Kumar, R. & Rao, T. R. Predation on Mosquito Larvae by Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) in the Presence of Alternate Prey. Int Rev Hydrobiol. 88, 570–581 (2003).

    Article 

    Google Scholar 

  • Baldrighi, E. et al. The cost for biodiversity: records of ciliate-nematode epibiosis with the description of three new Suctorian species. Diversity 12, 224. https://doi.org/10.3390/d12060224 (2020).

    Article 

    Google Scholar 

  • Morado, J. F. & Small, E. B. Ciliate parasites and related diseases of Crustacea: a review. Rev. Fish. Sci. 3, 275–354 (1995).

    Article 

    Google Scholar 

  • Lúcia, S. L., Safi Kam, W., Tang, Ryan, B. Carnegie. Investigating the epibiotic peritrich Zoothamnium intermedium Precht, 1935: Seasonality and distribution of its relationships with copepods in Chesapeake Bay (USA), Eur. J. Protistol. 84, 125880, https://doi.org/10.1016/j.ejop.2022.125880 (2022).

  • Coats, D. W. & Heinbokel, J. F. A study of reproduction and other life cycle phenomena in planktonic protists using an acridine orange fluorescence technique. Mar. Biol. 67, 71–79. https://doi.org/10.1007/BF00397096 (1982).

    Article 

    Google Scholar 

  • Montagnes, D. J. S. A Quantitative Protargol Stain (QPS) for Ciliates: method description and test of its quantitative nature. Mar. Microb. Food Webs. 2, 83–93 (1987).

    Google Scholar 

  • Montagnes, D. J. S. & Lynn, D. H. A Quantitative Protargol stain (QPS) for ciliates and other protists. In Handbook of methods in aquatic microbial ecology (eds Kemp, P. et al.) 229–240 (Lewis Publishers, 1993).

    Google Scholar 

  • Warren, A. Revision of the genus Vorticella (Ciliophora: Peritrichida). Bull. Br. Museum Nat. History 50, 48–52 (1986).

    Google Scholar 

  • Foissner, W. et al. Intraclass evolution and classification of the Colpodea (Ciliophora). J. Eukaryot. Microbiol. 58, 397–415 (2011).

    Article 

    Google Scholar 

  • Foissner, W., Berger, H. & Kohmann, F. Taxonomische und oekologische Revision der Ciliaten des Saprobiensystems—Band II: Peritrichia, Heterotrichida, Odontostomatida – Informationsberichte des Bayr. Landesamtes fuer Wasserwirtschaft. Heft 5(92), 1–502 (1992).

    Google Scholar 

  • Santoferrara, L. F., Alder, V. V. & McManus, G. B. Phylogeny, classification and diversity of Choreotrichia and Oligotrichia (Ciliophora, Spirotrichea). Mol. Phylogenet. Evol. 112, 12–22 (2017).

    Article 

    Google Scholar 

  • Hudson, P. L. et al. Cyclopoid and Harpacticoid Copepods of the Laurentian Great Lakes. Ohio Biol. Survey Bull. New Series. 12, 50 (1998).

    Google Scholar 

  • Hudson, P. L et al. Cyclopoid copepods of the Laurentian Great Lakes US Geological Survey, Great Lakes Science Center, Ann Arbor, Michigan. Available: www.glsc.usgs.gov/greatlakescopepods/Key.asp (2003).

  • Kumar, R., Muhid, P., Dahms, H. U., Sharma, J. & Hwang, J.-S. Biological mosquito control is affected by alternative prey. Zool. Stud. 54, 55. https://doi.org/10.1186/s40555-015-0132-9 (2015).

    Article 

    Google Scholar 

  • Chesson, J. The estimation and analysis of preference and its relationship to foraging models. Ecology 64, 1297–1304 (1983).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Development of InDel markers for interspecific hybridization between hill pigeons and feral pigeons based on whole-genome re-sequencing

    Prediction of tide level based on variable weight combination of LightGBM and CNN-BiGRU model