in

Variation in heat shock protein 40 kDa relates to divergence in thermotolerance among cryptic rotifer species

  • Mayr, E. Systematics and the Origin of Species, from the Viewpoint of a Zoologist (Harvard University Press, 1942).

    Google Scholar 

  • Ostevik, K. L., Andrew, R. L., Otto, S. P. & Rieseberg, L. H. Multiple reproductive barriers separate recently diverged sunflower ecotypes. Evolution 70, 2322–2335 (2016).

    Article 

    Google Scholar 

  • Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176–192 (2014).

    Article 

    Google Scholar 

  • Cheng, J. & Sha, Z.-L. Cryptic diversity in the Japanese mantis shrimp (Crustacea: Squillidae): Allopatric diversification, secondary contact and hybridization. Sci. Rep. 7, 1972 (2017).

    Article 
    ADS 

    Google Scholar 

  • Michaloudi, E. et al. Reverse taxonomy applied to the Brachionus calyciflorus cryptic species complex: Morphometric analysis confirms species delimitations revealed by molecular phylogenetic analysis and allows the (re)description of four species. PLoS ONE 13, e0203168 (2018).

    Article 

    Google Scholar 

  • Zhang, W. & Declerck, S. A. J. Intrinsic postzygotic barriers constrain cross-fertilisation between two hybridising sibling rotifer species of the Brachionus calyciflorus species complex. Freshw. Biol. 67, 240–249 (2022).

    Article 

    Google Scholar 

  • Zhang, W. & Declerck, S. A. J. Reduced fertilization constitutes an important prezygotic reproductive barrier between two sibling species of the hybridizing Brachionus calyciflorus species complex. Hydrobiologia 849, 1701–1711 (2022).

    Article 

    Google Scholar 

  • Seehausen, O., van Alphen, J. J. M. & Witte, F. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277, 1808–1811 (1997).

    Article 

    Google Scholar 

  • Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).

    Article 

    Google Scholar 

  • Gill, B. A. et al. Cryptic species diversity reveals biogeographic support for the ’mountain passes are higher in the tropics’ hypothesis. Proc. R. Soc. B. 283, 20160553 (2016).

    Article 

    Google Scholar 

  • Sáez, A. G. & Lozano, E. Body doubles. Nature 433, 111 (2005).

    Article 
    ADS 

    Google Scholar 

  • Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).

    Article 

    Google Scholar 

  • Mills, S. et al. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796, 39–58 (2017).

    Article 

    Google Scholar 

  • Struck, T. H. et al. Finding evolutionary processes hidden in cryptic species. Trends Ecol. Evol. 33, 153–163 (2018).

    Article 

    Google Scholar 

  • Leibold, M. A. & McPeek, M. A. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87, 1399–1410 (2006).

    Article 

    Google Scholar 

  • Gabaldón, C., Fontaneto, D., Carmona, M. J., Montero-Pau, J. & Serra, M. Ecological differentiation in cryptic rotifer species: What we can learn from the Brachionus plicatilis complex. Hydrobiologia 796, 7–18 (2017).

    Article 

    Google Scholar 

  • Nicholls, B. & Racey, P. A. Contrasting home-range size and spatial partitioning in cryptic and sympatric pipistrelle bats. Behav. Ecol. Sociobiol. 61, 131–142 (2006).

    Article 

    Google Scholar 

  • Ortells, R., Gómez, A. & Serra, M. Coexistence of cryptic rotifer species: Ecological and genetic characterisation of Brachionus plicatilis. Freshw. Biol. 48, 2194–2202 (2003).

    Article 

    Google Scholar 

  • Wellborn, G. A. & Cothran, R. D. Niche diversity in crustacean cryptic species: Complementarity in spatial distribution and predation risk. Oecologia 154, 175–183 (2007).

    Article 
    ADS 

    Google Scholar 

  • Gause, G. F. The struggle for existence (Williams and Wilkins, 1934).

    Book 
    MATH 

    Google Scholar 

  • Segers, H. Global diversity of rotifers (Rotifera) in freshwater. Hydrobiologia 595, 49–59 (2008).

    Article 

    Google Scholar 

  • Fontaneto, D. Molecular phylogenies as a tool to understand diversity in rotifers. Int. Rev. Hydrobiol. 99, 178–187 (2014).

    Article 

    Google Scholar 

  • Papakostas, S. et al. Integrative taxonomy recognizes evolutionary units despite widespread mitonuclear discordance: Evidence from a rotifer cryptic species complex. Syst. Biol. 65, 508–524 (2016).

    Article 

    Google Scholar 

  • García-Morales, A. E. & Elías-Gutiérrez, M. DNA barcoding of freshwater rotifera in Mexico: Evidence of cryptic speciation in common rotifers. Mol. Ecol. Resour. 13, 1097–1107 (2013).

    Google Scholar 

  • Wang, X. L. et al. Differences in life history characteristics between two sibling species in Brachionus calyciflorus complex from tropical shallow lakes. Ann. Limnol. Int. J. Lim. 50, 289–298 (2014).

    Article 

    Google Scholar 

  • Wen, X., Xi, Y., Zhang, G., Xue, Y. & Xiang, X. Coexistence of cryptic Brachionus calyciflorus (Rotifera) species: Roles of environmental variables. J. Plankton Res. 38, 478–489 (2016).

    Article 

    Google Scholar 

  • Xiang, X.-L., Chen, Y.-Y., Han, Y., Wang, X.-L. & Xi, Y.-L. Comparative studies on the life history characteristics of two Brachionus calyciflorus strains belonging to the same cryptic species. Biochem. Syst. Ecol. 69, 138–144 (2016).

    Article 

    Google Scholar 

  • Xiang, X.-L. et al. Patterns and processes in the genetic differentiation of the Brachionus calyciflorus complex, a passively dispersing freshwater zooplankton. Mol. Phylogenet. Evol. 59, 386–398 (2011).

    Article 

    Google Scholar 

  • Xiang, X.-L. et al. Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China. Mol. Ecol. 20, 3027–3044 (2011).

    Article 

    Google Scholar 

  • Gilbert, J. J. & Walsh, E. J. Brachionus calyciflorus is a species complex: Mating behavior and genetic differentiation among four geographically isolated strains. Hydrobiologia 546, 257–265 (2005).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Temporal patterns and processes of genetic differentiation of the Brachionus calyciflorus (Rotifera) complex in a subtropical shallow lake. Hydrobiologia 807, 313–331 (2018).

    Article 

    Google Scholar 

  • Zhang, W., Lemmen, K. D., Zhou, L., Papakostas, S. & Declerck, S. A. J. Patterns of differentiation in the life history and demography of four recently described species of the Brachionus calyciflorus cryptic species complex. Freshw. Biol. 64, 1994–2005 (2019).

    Article 

    Google Scholar 

  • Lemmen, K. D., Verhoeven, K. J. F. & Declerck, S. A. J. Experimental evidence of rapid heritable adaptation in the absence of initial standing genetic variation. Funct. Ecol. 36, 226–238 (2022).

    Article 

    Google Scholar 

  • Paraskevopoulou, S., Dennis, A. B., Weithoff, G., Hartmann, S. & Tiedemann, R. Within species expressed genetic variability and gene expression response to different temperatures in the rotifer Brachionus calyciflorus sensu stricto. PLoS ONE 14, e0223134 (2019).

    Article 

    Google Scholar 

  • Paraskevopoulou, S., Dennis, A. B., Weithoff, G. & Tiedemann, R. Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers. Sci. Rep. 10, 13281 (2020).

    Article 
    ADS 

    Google Scholar 

  • Paraskevopoulou, S., Tiedemann, R. & Weithoff, G. Differential response to heat stress among evolutionary lineages of an aquatic invertebrate species complex. Biol. Lett. 14, 20180498 (2018).

    Article 

    Google Scholar 

  • Takemoto, K. & Akutsu, T. Origin of structural difference in metabolic networks with respect to temperature. BMC Syst. Biol. 2, 82 (2008).

    Article 

    Google Scholar 

  • Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).

    Book 

    Google Scholar 

  • Atkinson, D. Temperature and organism size: A biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58 (1994).

    Article 

    Google Scholar 

  • Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    Article 
    ADS 

    Google Scholar 

  • Walczyńska, A., Franch-Gras, L. & Serra, M. Empirical evidence for fast temperature-dependent body size evolution in rotifers. Hydrobiologia 796, 191–200 (2017).

    Article 

    Google Scholar 

  • Brown, W. L. & Wilson, E. O. Character displacement. Syst. Zool. 5, 49–64 (1956).

    Article 

    Google Scholar 

  • Marrone, F., Fontaneto, D. & Naselli-Flores, L. Cryptic diversity, niche displacement and our poor understanding of taxonomy and ecology of aquatic microorganisms. Hydrobiologia https://doi.org/10.1007/s10750-022-04904-x (2022).

    Article 

    Google Scholar 

  • Pekkonen, M., Ketola, T. & Laakso, J. T. Resource availability and competition shape the evolution of survival and growth ability in a bacterial community. PLoS ONE 8, e76471 (2013).

    Article 
    ADS 

    Google Scholar 

  • Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011).

    Article 
    ADS 

    Google Scholar 

  • Drummond, D. A. & Wilke, C. O. The evolutionary consequences of erroneous protein synthesis. Nat. Rev. Genet. 10, 715–724 (2009).

    Article 

    Google Scholar 

  • Fraser, H. B. Genome-wide approaches to the study of adaptive gene expression evolution: Systematic studies of evolutionary adaptations involving gene expression will allow many fundamental questions in evolutionary biology to be addressed. BioEssays 33, 469–477 (2011).

    Article 

    Google Scholar 

  • Fraser, H. B. Gene expression drives local adaptation in humans. Genome Res. 23, 1089–1096 (2013).

    Article 

    Google Scholar 

  • Franch-Gras, L. et al. Rotifer adaptation to the unpredictability of the growing season. Hydrobiologia 844, 257–273 (2019).

    Article 

    Google Scholar 

  • Tarazona, E., Lucas-Lledó, J. I., Carmona, M. J. & García-Roger, E. M. Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes. Sci. Rep. 10, 21366 (2020).

    Article 
    ADS 

    Google Scholar 

  • Smith, H. A., Burns, A. R., Shearer, T. L. & Snell, T. W. Three heat shock proteins are essential for rotifer thermotolerance. J. Exp. Mar. Biol. Ecol. 413, 1–6 (2012).

    Article 

    Google Scholar 

  • Alonso, C. R. & Wilkins, A. S. The molecular elements that underlie developmental evolution. Nat. Rev. Genet. 6, 709–715 (2005).

    Article 

    Google Scholar 

  • Romero, I. G., Ruvinsky, I. & Gilad, Y. Comparative studies of gene expression and the evolution of gene regulation. Nat. Rev. Genet. 13, 505–516 (2012).

    Article 

    Google Scholar 

  • Franch-Gras, L. et al. Genomic signatures of local adaptation to the degree of environmental predictability in rotifers. Sci. Rep. 8, 16051 (2018).

    Article 
    ADS 

    Google Scholar 

  • Nowell, R. W. et al. Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species. PLoS Biol. 16, e2004830 (2018).

    Article 

    Google Scholar 

  • Feugeas, J.-P. et al. Links between transcription, environmental adaptation and gene variability in Escherichia coli: Correlations between gene expression and gene variability reflect growth efficiencies. Mol. Biol. Evol. 33, 2515–2529 (2016).

    Article 

    Google Scholar 

  • Pai, A. A., Pritchard, J. K. & Gilad, Y. The genetic and mechanistic basis for variation in gene regulation. PLoS Genet. 11, e1004857 (2015).

    Article 

    Google Scholar 

  • Gribble, K. E. & Mark Welch, D. B. The mate recognition protein gene mediates reproductive isolation and speciation in the Brachionus plicatilis cryptic species complex. BMC Evol. Biol. 12, 134 (2012).

    Article 

    Google Scholar 

  • Via, S. Natural selection in action during speciation. Proc. Natl. Acad. Sci. USA. 106, 9939–9946 (2009).

    Article 
    ADS 

    Google Scholar 

  • Ho, S. Y. W. & Duchêne, S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol. Ecol. 23, 5947–5965 (2014).

    Article 

    Google Scholar 

  • Yang, J., Mu, Y., Dong, S., Jiang, Q. & Yang, J. Changes in the expression of four heat shock proteins during the aging process in Brachionus calyciflorus (Rotifera). Cell Stress Chaperones 19, 33–52 (2014).

    Article 

    Google Scholar 

  • Mahmood, K., Jadoon, S., Mahmood, Q., Irshad, M. & Hussain, J. Synergistic effects of toxic elements on heat shock proteins. Biomed. Res. Int. 2014, 564136 (2014).

    Article 

    Google Scholar 

  • Park, J. C. et al. Genome-wide identification and structural analysis of heat shock protein gene families in the marine rotifer Brachionus spp.: Potential application in molecular ecotoxicology. Comp. Biochem. Physiol. D 36, 100749 (2020).

    Google Scholar 

  • Santoro, M. Heat shock factors and the control of the stress response. Biochem. Pharmacol. 59, 55–63 (2000).

    Article 

    Google Scholar 

  • Birky, C. W. & Gilbert, J. J. Parthenogenesis in rotifers: The control of sexual and asexual reproduction. Am. Zool. 11, 245–266 (1971).

    Article 

    Google Scholar 

  • Snell, T. W. Rotifers as models for the biology of aging. Int. Rev. Hydrobiol. 99, 84–95 (2014).

    Article 

    Google Scholar 

  • Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).

    Article 

    Google Scholar 

  • Muller, H. J. Some genetic aspects of sex. Am. Nat. 66, 118–138 (1932).

    Article 

    Google Scholar 

  • Muller, H. J. The relation of recombination to mutational advance. Mut. Res. 1, 2–9 (1964).

    Article 

    Google Scholar 

  • Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744 (2004).

    Article 

    Google Scholar 

  • Zhang, Y., Xu, S., Sun, C., Dumont, H. & Han, B.-P. A new set of highly efficient primers for COI amplification in rotifers. Mitochondrial DNA B 6, 636–640 (2021).

    Article 

    Google Scholar 

  • Turner, C. B., Marshall, C. W. & Cooper, V. S. Parallel genetic adaptation across environments differing in mode of growth or resource availability. Evol. Lett. 2, 355–367 (2018).

    Article 

    Google Scholar 

  • Lan, B. et al. Tempo-spatial variations of zooplankton communities in relation to environmental factors and the ecological implications: A case study in the hinterland of the Three Gorges Reservoir area. China. PLoS ONE 16, e0256313 (2021).

    Article 

    Google Scholar 

  • Pellecchia, M., Szyperski, T., Wall, D., Georgopoulos, C. & Wüthrich, K. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. Mol. Biol. 260, 236–250 (1996).

    Article 

    Google Scholar 

  • Greene, M. K., Maskos, K. & Landry, S. J. Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc. Natl. Acad. Sci. USA 95, 6108–6113 (1998).

    Article 
    ADS 

    Google Scholar 

  • Wittung-Stafshede, P., Guidry, J., Horne, B. E. & Landry, S. J. The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42, 4937–4944 (2003).

    Article 

    Google Scholar 

  • Cintron, N. S. & Toft, D. Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. J. Biol. Chem. 281, 26235–26244 (2006).

    Article 

    Google Scholar 

  • Li, J., Qian, X. & Sha, B. The crystal structure of the yeast Hsp40 Ydj1 complexed with its peptide substrate. Structure 11, 1475–1483 (2003).

    Article 

    Google Scholar 

  • Sha, B., Lee, S. & Cyr, D. M. The crystal structure of the peptide-binding fragment from the yeast Hsp40 protein Sis1. Structure 8, 799–807 (2000).

    Article 

    Google Scholar 

  • Brender, J. R. & Zhang, Y. Predicting the effect of mutations on protein-protein binding interactions through structure-based interface profiles. PLoS Comput. Biol. 11, e1004494 (2015).

    Article 
    ADS 

    Google Scholar 

  • Shortle, D. One sequence plus one mutation equals two folds. Proc. Natl. Acad. Sci. USA 106, 21011–21012 (2009).

    Article 
    ADS 

    Google Scholar 

  • Charlesworth, B. The effects of deleterious mutations on evolution at linked sites. Genetics 190, 5–22 (2012).

    Article 

    Google Scholar 

  • Cutter, A. D. A Primer of Molecular Population Genetics (Oxford University Press, 2019).

    Book 

    Google Scholar 

  • Barraclough, T. G., Fontaneto, D., Ricci, C. & Herniou, E. A. Evidence for inefficient selection against deleterious mutations in cytochrome oxidase I of asexual bdelloid rotifers. Mol. Biol. Evol. 24, 1952–1962 (2007).

    Article 

    Google Scholar 

  • Tang, C. Q., Obertegger, U., Fontaneto, D. & Barraclough, T. G. Sexual species are separated by larger genetic gaps than asexual species in rotifers. Evol. Int. J. Org. Evol. 68, 2901–2916 (2014).

    Article 

    Google Scholar 

  • Brower, A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. U.S.A. 91, 6491–6495 (1994).

    Article 
    ADS 

    Google Scholar 

  • Yang, W., Deng, Z., Blair, D., Hu, W. & Yin, M. Phylogeography of the freshwater rotifer Brachionus calyciflorus species complex in China. Hydrobiologia 849, 2813–2829 (2022).

    Article 

    Google Scholar 

  • Chin, T. A. & Cristescu, M. E. Speciation in Daphnia. Mol. Ecol. 30, 1398–1418 (2021).

    Article 

    Google Scholar 

  • Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).

    Article 

    Google Scholar 

  • Davidson, N. M., Hawkins, A. D. K. & Oshlack, A. SuperTranscripts: A data driven reference for analysis and visualisation of transcriptomes. Genome Biol. 18, 148 (2017).

    Article 

    Google Scholar 

  • Altschul, S. F., Gish, W. P., Miller, W., Myers, E. W. & Lipman, D. L. Basic local alignment search tool. Mol. Biol. 215, 403–410 (1990).

    Article 

    Google Scholar 

  • Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).

    Article 

    Google Scholar 

  • Cock, P. J. A. et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article 

    Google Scholar 

  • Suyama, M., Torrents, D. & Bork, P. PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).

    Article 

    Google Scholar 

  • Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article 

    Google Scholar 

  • Ashburner, M. et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article 

    Google Scholar 

  • Lavezzo, E., Falda, M., Fontana, P., Bianco, L. & Toppo, S. Enhancing protein function prediction with taxonomic constraints: The Argot2.5 web server. Methods 93, 15–23 (2016).

    Article 

    Google Scholar 

  • The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).

    Article 

    Google Scholar 

  • Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29-37 (2011).

    Article 

    Google Scholar 

  • Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    Article 

    Google Scholar 

  • Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    Article 

    Google Scholar 

  • Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article 

    Google Scholar 

  • Untergasser, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    Article 

    Google Scholar 

  • Palumbi, S. R. The polymerase chain reaction. Mol. Syst. 2, 205–247 (1996).

    Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    Google Scholar 

  • Cornish-Bowden, A. Nomenclature for incompletely specified bases in nucleic acid sequences: Recommendations. Nucleic Acids Res. 39, 3021–3030 (1985).

    Article 

    Google Scholar 

  • Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).

    Article 

    Google Scholar 

  • Stephens, M. & Donnelly, P. A Comparison of bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1169 (2003).

    Article 

    Google Scholar 

  • Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    Article 

    Google Scholar 

  • Kosakovsky Pond, S. L. & Frost, S. D. W. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).

    Article 

    Google Scholar 

  • Weaver, S. et al. Datamonkey 2.0: A modern web application for characterizing selective and other evolutionary processes. Mol. Biol. Evol. 35, 773–777 (2018).

    Article 

    Google Scholar 

  • Leigh, J. W. & Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article 

    Google Scholar 

  • Krzywinski, M. et al. Circos: An information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article 

    Google Scholar 

  • Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article 

    Google Scholar 

  • Galili, T. dendextend: An R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).

    Article 

    Google Scholar 

  • Andrew Rambaut Group. FigTree. (2022). http://tree.bio.ed.ac.uk/software/.

  • Inkscape Project. Inkscape. (2020). https://inkscape.org.

  • Wong, W. S. W., Yang, Z., Goldman, N. & Nielsen, R. Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics 168, 1041–1051 (2004).

    Article 

    Google Scholar 

  • Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article 

    Google Scholar 

  • Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, 016 (2018).

    Article 

    Google Scholar 

  • Kiemel, K., de Cahsan, B., Paraskevopoulou, S., Weithoff, G. & Tiedemann, R. Mitochondrial genomes of the freshwater monogonont rotifer Brachionus fernandoi and of two additional B. calyciflorus sensu stricto lineages from Germany and the USA (Rotifera, Brachionidae). Mitochondrial DNA B 7, 646–648 (2022).

    Article 

    Google Scholar 

  • Kim, M.-S. et al. Complete mitochondrial genome of the freshwater monogonont rotifer Brachionus angularis (Rotifera, Brachionidae). Mitochondrial DNA B. 5, 3754–3755 (2020).

    Google Scholar 

  • Kim, M.-S. et al. Complete mitochondrial genomes of two marine monogonont rotifer Brachionus manjavacas strains. Mitochondrial DNA B. 6, 1921–1923 (2021).

    Article 

    Google Scholar 

  • Suga, K., Mark Welch, D. B., Tanaka, Y., Sakakura, Y. & Hagiwara, A. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis. Mol. Biol. Evol. 25, 1129–1137 (2008).

    Article 

    Google Scholar 

  • Hwang, D.-S. et al. Complete mitochondrial genome of the monogonont rotifer, Brachionus koreanus (Rotifera, Brachionidae). Mitochondrial DNA B. 25, 29–30 (2014).

    Article 

    Google Scholar 

  • Kim, H.-S. et al. Complete mitochondrial genome of the monogonont rotifer Brachionus rotundiformis (Rotifera, Brachionidae). Mitochondrial DNA B. 2, 39–40 (2017).

    Article 

    Google Scholar 

  • Choi, B.-S. et al. Complete mitochondrial genome of the freshwater monogonont rotifer Brachionus rubens (Rotifera, Brachionidae). Mitochondrial DNA B. 5, 5–6 (2019).

    Article 

    Google Scholar 

  • Choi, B.-S. et al. Complete mitochondrial genome of the marine monogonont rotifer Proales similis (Rotifera, Proalidae). Mitochondrial DNA B. 5, 1151–1152 (2020).

    Article 

    Google Scholar 

  • Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).

    Article 

    Google Scholar 

  • Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Development of InDel markers for interspecific hybridization between hill pigeons and feral pigeons based on whole-genome re-sequencing

    Prediction of tide level based on variable weight combination of LightGBM and CNN-BiGRU model