Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).
Google Scholar
Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C. F. Spatial and temporal trends of global pollination benefit. PLoS ONE 7, e35954 (2012).
Google Scholar
Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).
Google Scholar
Rodger, J. G. et al. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 7, eabd3524 (2021).
Google Scholar
Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).
Google Scholar
Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999 (2020).
Google Scholar
Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).
Google Scholar
Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).
Google Scholar
Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).
Google Scholar
Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).
Google Scholar
Valdovinos, F. S. et al. Species traits and network structure predict the success and impacts of pollinator invasions. Nat. Commun. 9, 2153 (2018).
Google Scholar
Waser, N. M., Chittka, L., Price, M. V., Williams, N. M. & Ollerton, J. Generalization in pollination systems, and why it matters. Ecology 77, 1043–1060 (1996).
Google Scholar
Brosi, B. J. Pollinator specialization: from the individual to the community. New Phytol. 210, 1190–1194 (2016).
Google Scholar
Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).
Google Scholar
Waser, N. M. & Ollerton, J. Plant–Pollinator Interactions: From Specialization to Generalization (Univ. of Chicago Press, 2006).
Ashman, T.-L., Arceo-Gómez, G., Bennett, J. M. & Knight, T. M. Is heterospecific pollen receipt the missing link in understanding pollen limitation of plant reproduction? Am. J. Bot. 107, 845–847 (2020).
Google Scholar
Garibaldi, L. A. et al. Trait matching of flower visitors and crops predicts fruit set better than trait diversity. J. Appl. Ecol. 52, 1436–1444 (2015).
Google Scholar
CaraDonna, P. J. et al. Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecol. Lett. 24, 149–161 (2021).
Google Scholar
Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013).
Google Scholar
Jacquemin, F. et al. Loss of pollinator specialization revealed by historical opportunistic data: insights from network-based analysis. PLoS ONE 15, e0235890 (2020).
Google Scholar
Mathiasson, M. E. & Rehan, S. M. Wild bee declines linked to plant–pollinator network changes and plant species introductions. Insect Conserv. Divers. 13, 595–605 (2020).
Google Scholar
Bennett, J. M. et al. A review of European studies on pollination networks and pollen limitation, and a case study designed to fill in a gap. AoB Plants 10, ply068 (2018).
Google Scholar
Doré, M., Fontaine, C. & Thébault, E. Relative effects of anthropogenic pressures, climate, and sampling design on the structure of pollination networks at the global scale. Glob. Change Biol. 27, 1266–1280 (2021).
Google Scholar
Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl Acad. Sci. USA 113, 146–151 (2016).
Google Scholar
Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358 (2009).
Google Scholar
Hung, K.-L. J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B 285, 20172140 (2018).
Google Scholar
Kearns, C. A. Anthophilous fly distribution across an elevation gradient. Am. Midl. Nat. 127, 172–182 (1992).
Google Scholar
Kevan, P. G. Insect pollination of high arctic flowers. J. Ecol. 60, 831–847 (1972).
Google Scholar
Tiusanen, M., Hebert, P. D. N., Schmidt, N. M. & Roslin, T. One fly to rule them all—muscid flies are the key pollinators in the arctic. Proc. Roy. Soc. B 283, 20161271 (2016).
Google Scholar
Weiner, C., Werner, M., Linsenmair, K. E. & Blüthgen, N. Land use intensity in grasslands: changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl. Ecol. 12, 292–299 (2011).
Google Scholar
Rader, R., Edwards, W., Westcott, D. A., Cunningham, S. A. & Howlett, B. G. Pollen transport differs among bees and flies in a human-modified landscape. Divers. Distrib. 17, 519–529 (2011).
Google Scholar
Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).
Google Scholar
Ghisbain, G., Gérard, M., Wood, T. J., Hines, H. M. & Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 96, 2755–2770 (2021).
Google Scholar
Silén, F. Blombiologiska iakttagelser i Kittilä Lappmark. Medd. Soc. Fauna Flora Fennica 31, 80–99 (1906).
Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).
Google Scholar
Erhardt, A. Pollination of Dianthus superbus L. Flora 185, 99–106 (1991).
Google Scholar
Witt, T., Jürgens, A., Geyer, R. & Gottsberger, G. Nectar dynamics and sugar composition in flowers of Silene and Saponaria species (Caryophyllaceae). Plant Biol. 1, 334–345 (1999).
Google Scholar
Morales, C. L. & Traveset, A. Interspecific pollen transfer: magnitude, prevalence and consequences for plant fitness. Crit. Rev. Plant Sci. 27, 221–238 (2008).
Google Scholar
Ashman, T.-L. & Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100, 1061–1070 (2013).
Google Scholar
Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B 282, 20142934 (2015).
Google Scholar
Stavert, J. R. et al. Hairiness: the missing link between pollinators and pollination. PeerJ 4, e2779 (2016).
Google Scholar
Doyle, T. et al. Pollination by hoverflies in the Anthropocene. Proc. R. Soc. B 287, 20200508 (2020).
Google Scholar
Albrecht, M., Schmid, B., Hautier, Y. & Müller, C. B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B. 279, 4845–4852 (2012).
Google Scholar
Fründ, J., Dormann, C. F., Holzschuh, A. & Tscharntke, T. Bee diversity effects on pollination depend on functional complementarity and niche shifts. Ecology 94, 2042–2054 (2013).
Google Scholar
Magrach, A., Molina, F. P. & Bartomeus, I. Niche complementarity among pollinators increases community-level plant reproductive success. Peer Commun. J. 1, e1 (2021).
Google Scholar
Giménez-Benavides, L., Dötterl, S., Jürgens, A., Escudero, A. & Iriondo, J. M. Generalist diurnal pollination provides greater fitness in a plant with nocturnal pollination syndrome: assessing the effects of a Silene–Hadena interaction. Oikos 116, 1461–1472 (2007).
Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).
Google Scholar
Vizentin-Bugoni, J., Debastiani, V. J., Bastazini, V. A. G., Maruyama, P. K. & Sperry, J. H. Including rewiring in the estimation of the robustness of mutualistic networks. Methods Ecol. Evol. 11, 106–116 (2020).
Google Scholar
Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).
Google Scholar
Pekkarinen, A. & Teräs, I. Zoogeography of Bombus and Psithyrus in northwestern Europe (Hymenoptera, Apidae). Ann. Zool. Fennici 30, 187–208 (1993).
Arbetman, M. P., Gleiser, G., Morales, C. L., Williams, P. & Aizen, M. A. Global decline of bumblebees is phylogenetically structured and inversely related to species range size and pathogen incidence. Proc. R. Soc. B 284, 20170204 (2017).
Google Scholar
Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).
Google Scholar
Arceo-Gómez, G., Barker, D., Stanley, A., Watson, T. & Daniels, J. Plant–pollinator network structural properties differentially affect pollen transfer dynamics and pollination success. Oecologia 192, 1037–1045 (2020).
Google Scholar
de Santiago-Hernández, M. H. et al. The role of pollination effectiveness on the attributes of interaction networks: from floral visitation to plant fitness. Ecology 100, e02803 (2019).
Google Scholar
Koch, V., Zoller, L., Bennett, J. M. & Knight, T. M. Pollinator dependence but no pollen limitation for eight plants occurring north of the Arctic Circle. Ecol. Evol. 10, 13664–13672 (2020).
Google Scholar
Loboda, S., Savage, J., Buddle, C. M., Schmidt, N. M. & Høye, T. T. Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography 41, 265–277 (2018).
Google Scholar
Høye, T. T., Post, E., Schmidt, N. M., Trøjelsgaard, K. & Forchhammer, M. C. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat. Clim. Change 3, 759–763 (2013).
Google Scholar
Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).
Google Scholar
Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).
Google Scholar
Bartomeus, I., Stavert, J. R., Ward, D. & Aguado, O. Historical collections as a tool for assessing the global pollination crisis. Philos. Trans. R. Soc. B 374, 20170389 (2019).
Google Scholar
Rakosy, D., Ashman, T.-L., Zoller, L., Stanley, A. & Knight, T. M. Integration of historic collections can shed light on patterns of change in plant–pollinator interactions and pollination service. Func. Ecol. https://doi.org/10.1111/1365-2435.14211 (2022).
Hyne, C. J. C. W. Through Arctic Lapland (A. and C. Black, 1898).
Knuth, P. Handbuch der Blütenbiologie, unter Zugrundelegung von Herman Müllers Werk: ‘Die Befruchtung der Blumen durch Insekten’ (W. Engelmann, 1898).
Zoller, L. & Knight, T. M. Historical records of plant-insect interactions in subarctic Finland.BMC Res. Notes 15, 317 (2022).
Google Scholar
Zoller, L. & Knight, T. M. Historical records of plant–insect interactions in subarctic Finland. figshare https://doi.org/10.6084/m9.figshare.c.5828663.v4 (2022).
Zoller, L., Bennett, J. M. & Knight, T. M. Diel-scale temporal dynamics in the abundance and composition of pollinators in the arctic summer. Sci. Rep. 10, 21187 (2020).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Google Scholar
Klotz, S., Kühn, I. & Durka, W. Biolflor Database (UFZ—Centre for Environmental Research Leipzig-Halle, 2002); https://www.ufz.de/biolflor/index.jsp
Oksanen, J. et al. vegan: Community ecology package. R version 2.5.7 (2020).
Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371 (2006).
Google Scholar
Dormann, C. F. et al. bipartite: Visualising bipartite networks and calculating some (ecological) indices. R version 2.16 (2021).
Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).
Google Scholar
Stefan, V. & Knight, T. M. bootstrapnet: Bootstrap network metrics. R version 1.0.0 https://valentinitnelav.github.io/bootstrapnet/ (2021).
Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).
Google Scholar
Poisot, T. Dissimilarity of species interaction networks: quantifying the effect of turnover and rewiring. Peer Community Journal 2, e35 (2022).
Google Scholar
Dormann, C. F. How to be a specialist? Quantifying specialisation in pollination networks. Netw. Biol. 1, 1 (2011).
Source: Ecology - nature.com