Agostini, S. et al. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical–temperate transition zone. Sci. Rep. 8, 11354 (2018).
Google Scholar
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. Biol. Sci. 284, 20170507 (2017).
Google Scholar
White, E. P. et al. A comparison of the species–time relationship across ecosystems and taxonomic groups. Oikos 112, 185–195 (2006).
Google Scholar
Sax, D. F. & Gaines, S. D. Species invasions and extinction: the future of native biodiversity on islands. Proc. Natl Acad. Sci. USA 105, 11490–11497 (2008).
Google Scholar
Thompson, J. N. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332 (1998).
Google Scholar
Post, D. M. & Palkovacs, E. P. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos. Trans. R. Soc. Lond. B 364, 1629–1640 (2009).
Google Scholar
Reznick, D. N. & Travis, J. Experimental studies of evolution and eco-evo dynamics in guppies (Poecilia reticulata). Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110218-024926 (2019).
Hendry, A. P. Eco-evolutionary Dynamics (Princeton Univ. Press, 2020).
Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).
Google Scholar
Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).
Google Scholar
Hansen, S. K., Rainey, P. B., Haagensen, J. A. J. & Molin, S. Evolution of species interactions in a biofilm community. Nature 445, 533–536 (2007).
Google Scholar
Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl Acad. Sci. USA 107, 2124–2129 (2010).
Google Scholar
Turcotte, M. M., Reznick, D. N. & Hare, J. D. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecol. Lett. 14, 1084–1092 (2011).
Google Scholar
Lawrence, D. et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 10, e1001330 (2012).
Google Scholar
Celiker, H. & Gore, J. Clustering in community structure across replicate ecosystems following a long-term bacterial evolution experiment. Nat. Commun. 5, 4643 (2014).
Google Scholar
Andrade-Domínguez, A. et al. Eco-evolutionary feedbacks drive species interactions. ISME J. 8, 1041–1054 (2014).
Google Scholar
Reznick, D. Hard and soft selection revisited: how evolution by natural selection works in the real world. J. Hered. 107, 3–14 (2016).
Google Scholar
Matthews, B., Aebischer, T., Sullam, K. E., Lundsgaard-Hansen, B. & Seehausen, O. Experimental evidence of an eco-evolutionary feedback during adaptive divergence. Curr. Biol. 26, 483–489 (2016).
Google Scholar
Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl Acad. Sci. USA 115, 12000–12004 (2018).
Google Scholar
Preussger, D., Giri, S., Muhsal, L. K., Oña, L. & Kost, C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr. Biol. https://doi.org/10.1016/j.cub.2020.06.100 (2020).
Adamowicz, E. M., Muza, M., Chacón, J. M. & Harcombe, W. R. Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica. PLoS Pathog. 16, e1008700 (2020).
Google Scholar
Rodríguez-Verdugo, A. & Ackermann, M. Rapid evolution destabilizes species interactions in a fluctuating environment. ISME J. 15, 450–460 (2021).
Google Scholar
Barber, J. N. et al. The evolution of coexistence from competition in experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae. ISME J. 15, 746–761 (2021).
Google Scholar
Hart, S. F. M., Chen, C.-C. & Shou, W. Pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite unfavorable conditions. eLife 10, e57838 (2021).
Google Scholar
Kokko, H. et al. Can evolution supply what ecology demands? Trends Ecol. Evol. 32, 187–197 (2017).
Google Scholar
Nuismer, S. Introduction to Coevolutionary Theory (Macmillan Learning, 2017).
Stoltzfus, A. & McCandlish, D. M. Mutational biases influence parallel adaptation. Mol. Biol. Evol. 34, 2163–2172 (2017).
Google Scholar
Payne, J. L. et al. Transition bias influences the evolution of antibiotic resistance in Mycobacterium tuberculosis. PLoS Biol. 17, e3000265 (2019).
Google Scholar
Storz, J. F. et al. The role of mutation bias in adaptive molecular evolution: insights from convergent changes in protein function. Philos. Trans. R. Soc. Lond. B 374, 20180238 (2019).
Google Scholar
Gomez, K., Bertram, J. & Masel, J. Mutation bias can shape adaptation in large asexual populations experiencing clonal interference. Proc. Biol. Sci. 287, 20201503 (2020).
Google Scholar
Venkataram, S., Monasky, R., Sikaroodi, S. H., Kryazhimskiy, S. & Kacar, B. Evolutionary stalling and a limit on the power of natural selection to improve a cellular module. Proc. Natl Acad. Sci. USA 117, 18582–18590 (2020).
Google Scholar
Hom, E. F. Y. & Murray, A. W. Niche engineering demonstrates a latent capacity for fungal–algal mutualism. Science 345, 94–98 (2014).
Google Scholar
Wolfe, B. E. & Dutton, R. J. Fermented foods as experimentally tractable microbial ecosystems. Cell 161, 49–55 (2015).
Google Scholar
Chacón, J. M., Hammarlund, S. P., Martinson, J. N. V., Smith, L. B. & Harcombe, W. R. The ecology and evolution of model microbial mutualisms. Annu. Rev. Ecol. Evol. Syst. 52, 363–384 (2021).
Google Scholar
Blasche, S., Kim, Y., Oliveira, A. P. & Patil, K. R. Model microbial communities for ecosystems biology. Curr. Opin. Syst. Biol. 6, 51–57 (2017).
Google Scholar
Levy, S. F. et al. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519, 181–186 (2015).
Google Scholar
Venkataram, S. et al. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166, 1585–1596.e22 (2016).
Google Scholar
Jones, E. I., Bronstein, J. L. & Ferrière, R. The fundamental role of competition in the ecology and evolution of mutualisms. Ann. N. Y. Acad. Sci. 1256, 66–88 (2012).
Google Scholar
Boyer, S., Hérissant, L. & Sherlock, G. Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment. PLoS Genet. 17, e1009314 (2021).
Google Scholar
Blundell, J. R. et al. The dynamics of adaptive genetic diversity during the early stages of clonal evolution. Nat. Ecol. Evol. 3, 293–301 (2019).
Google Scholar
Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).
Google Scholar
Good, B. H., Martis, S. & Hallatschek, O. Adaptation limits ecological diversification and promotes ecological tinkering during the competition for substitutable resources. Proc. Natl Acad. Sci. USA 115, E10407–E10416 (2018).
Google Scholar
Zhu, Y. O., Siegal, M. L., Hall, D. W. & Petrov, D. A. Precise estimates of mutation rate and spectrum in yeast. Proc. Natl Acad. Sci. USA 111, E2310–E2318 (2014).
Google Scholar
Dunham, M. J. et al. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 16144–16149 (2002).
Google Scholar
Yona, A. H. et al. Chromosomal duplication is a transient evolutionary solution to stress. Proc. Natl Acad. Sci. USA 109, 21010–21015 (2012).
Google Scholar
Sunshine, A. B. et al. The fitness consequences of aneuploidy are driven by condition-dependent gene effects. PLoS Biol. 13, e1002155 (2015).
Google Scholar
Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102-103, 127–144 (1998).
Google Scholar
Desai, M. M. & Fisher, D. S. Beneficial mutation–selection balance and the effect of linkage on positive selection. Genetics 176, 1759–1798 (2007).
Google Scholar
Schiffels, S., Szöllosi, G. J., Mustonen, V. & Lässig, M. Emergent neutrality in adaptive asexual evolution. Genetics 189, 1361–1375 (2011).
Google Scholar
Nguyen, Ba,A. N. et al. High-resolution lineage tracking reveals travelling wave of adaptation in laboratory yeast. Nature 575, 494–499 (2019).
Google Scholar
Foster, K. R., Shaulsky, G., Strassmann, J. E., Queller, D. C. & Thompson, C. R. L. Pleiotropy as a mechanism to stabilize cooperation. Nature 431, 693–696 (2004).
Google Scholar
Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).
Google Scholar
Harcombe, W. Novel cooperation experimentally evolved between species. Evolution 64, 2166–2172 (2010).
Google Scholar
Vasi, F., Travisano, M. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. II. Changes in life-history traits during adaptation to a seasonal environment. Am. Nat. 144, 432–456 (1994).
Google Scholar
MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 2001).
Reznick, D., Bryant, M. J. & Bashey, F. r– and K-selection revisited: the role of population regulation in life-history evolution. Ecology 83, 1509–1520 (2002).
Google Scholar
Mueller, L. D. & Ayala, F. J. Trade-off between r-selection and K-selection in Drosophila populations. Proc. Natl Acad. Sci. USA 78, 1303–1305 (1981).
Google Scholar
Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. & Bonhoeffer, S. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am. Nat. 168, 242–251 (2006).
Google Scholar
Bachmann, H. et al. Availability of public goods shapes the evolution of competing metabolic strategies. Proc. Natl Acad. Sci. USA 110, 14302–14307 (2013).
Google Scholar
Lipson, D. A. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front. Microbiol. 6, 615 (2015).
Google Scholar
Orivel, J. et al. Trade-offs in an ant–plant–fungus mutualism. Proc. Biol. Sci. 284, 20161679 (2017).
Google Scholar
Fritts, R. K. et al. Enhanced nutrient uptake is sufficient to drive emergent cross-feeding between bacteria in a synthetic community. ISME J. 14, 2816–2828 (2020).
Google Scholar
Wortel, M. T., Noor, E., Ferris, M., Bruggeman, F. J. & Liebermeister, W. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield. PLoS Comput. Biol. 14, e1006010 (2018).
Google Scholar
Cheng, C. et al. Laboratory evolution reveals a two-dimensional rate-yield tradeoff in microbial metabolism. PLoS Comput. Biol. 15, e1007066 (2019).
Google Scholar
Luckinbill, L. S. r and K selection in experimental populations of Escherichia coli. Science 202, 1201–1203 (1978).
Google Scholar
Oxman, E., Alon, U. & Dekel, E. Defined order of evolutionary adaptations: experimental evidence. Evolution 62, 1547–1554 (2008).
Google Scholar
Jasmin, J.-N., Dillon, M. M. & Zeyl, C. The yield of experimental yeast populations declines during selection. Proc. Biol. Sci. 279, 4382–4388 (2012).
Google Scholar
Laan, L., Koschwanez, J. H. & Murray, A. W. Evolutionary adaptation after crippling cell polarization follows reproducible trajectories. eLife 4, e09638 (2015).
Google Scholar
Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).
Google Scholar
Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).
Google Scholar
Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).
Google Scholar
Meyer, J. R. et al. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335, 428–432 (2012).
Google Scholar
Herron, M. D. & Doebeli, M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol. 11, e1001490 (2013).
Google Scholar
Hillesland, K. L. et al. Erosion of functional independence early in the evolution of a microbial mutualism. Proc. Natl Acad. Sci. USA 111, 14822–14827 (2014).
Google Scholar
Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. Community composition of microbial microcosms follows simple assembly rules at evolutionary timescales. Nat. Commun. 12, 2891 (2021).
Google Scholar
MacLean, R. C. The tragedy of the commons in microbial populations: insights from theoretical, comparative and experimental studies. Heredity 100, 471–477 (2008).
Google Scholar
Dunn, B. et al. Recurrent rearrangement during adaptive evolution in an interspecific yeast hybrid suggests a model for rapid introgression. PLoS Genet. 9, e1003366 (2013).
Google Scholar
Barillot, E., Lacroix, B. & Cohen, D. Theoretical analysis of library screening using a N-dimensional pooling strategy. Nucleic Acids Res. 19, 6241–6247 (1991).
Google Scholar
Baym, M., Shaket, L., Anzai, I. A., Adesina, O. & Barstow, B. Rapid construction of a whole-genome transposon insertion collection for Shewanella oneidensis by Knockout Sudoku. Nat. Commun. 7, 13270 (2016).
Google Scholar
Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).
Google Scholar
Venkataram, S., Kuo, H., Hom, E., Kryazhimskiy, S. Early adaptation in a microbial community is dominated by mutualism-enhancing mutations. Dryad https://doi.org/10.6076/D14K5X (2022).
Source: Ecology - nature.com