in

Forest conservation in Indigenous territories and protected areas in the Brazilian Amazon

  • Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).

    Article 

    Google Scholar 

  • Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).

    Article 

    Google Scholar 

  • Jenkins, C., Pimm, S. & Joppa, L. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    Article 
    CAS 

    Google Scholar 

  • Nogueira, E., Yanai, A., de Vasconcelos, S., de Alencastro, G. & Fearnside, P. Brazil’s Amazonian protected areas as a bulwark against regional climate change. Reg. Environ. Change 18, 573–579 (2018).

    Article 

    Google Scholar 

  • Ochoa-Quintero, J., Gardner, T., Rosa, I., Ferraz, S. & Sutherland, W. Thresholds of species loss in Amazonian deforestation frontier landscapes. Conserv. Biol. 29, 440–451 (2015).

    Article 

    Google Scholar 

  • Cabral, A., Saito, C., Pereira, H. & Laques, A. Deforestation pattern dynamics in protected areas of the Brazilian Legal Amazon using remote sensing data. Appl. Geogr. 100, 101–115 (2018).

    Article 

    Google Scholar 

  • Nepstad, D. et al. Inhibition of Amazon deforestation and fire by parks and Indigenous lands. Conserv. Biol. 20, 65–73 (2006).

    Article 
    CAS 

    Google Scholar 

  • Ricketts, T. et al. Indigenous lands, protected areas, and slowing climate change. PLoS Biol. 8, e1000331 (2010).

    Article 

    Google Scholar 

  • Herrera, D., Pfaff, A. & Robalino, J. Impacts of protected areas vary with the level of government: comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 116, 14916–14925 (2019).

    Article 
    CAS 

    Google Scholar 

  • Jusys, T. Changing patterns in deforestation avoidance by different protection types in the Brazilian Amazon. PLoS ONE 13, e0195900 (2018).

    Article 

    Google Scholar 

  • Matricardi, E. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).

    Article 
    CAS 

    Google Scholar 

  • Silva, C. et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 7, 269 (2020).

    Article 

    Google Scholar 

  • Laurance, W. et al. The future of the Brazilian Amazon. Science 291, 438–439 (2001).

    Article 
    CAS 

    Google Scholar 

  • Laurance, W. et al. Development of the Brazilian Amazon. Response. Science 292, 1652–1654 (2001).

    Google Scholar 

  • Silveira, J. Development of the Brazilian Amazon. Science 292, 1651–1654 (2001).

    Article 
    CAS 

    Google Scholar 

  • Kauano, É., Silva, J., Diniz, J. & Michalski, F. Do protected areas hamper economic development of the Amazon region? An analysis of the relationship between protected areas and the economic growth of Brazilian Amazon municipalities. Land Use Policy 92, 104473 (2020).

    Article 

    Google Scholar 

  • Silveira, F., Ferreira, M., Perillo, L., Carmo, F. & Neves, F. Brazil’s protected areas under threat. Science 361, 459–459 (2018).

    Article 
    CAS 

    Google Scholar 

  • Begotti, R. & Peres, C. Brazil’s indigenous lands under threat. Science 363, 592–592 (2019).

    Article 

    Google Scholar 

  • Fearnside, P. Deforestation of the Brazilian Amazon. Oxford Research Encyclopedias: Environmental Science (Oxford Univ. Press, 2017); https://doi.org/10.1093/acrefore/9780199389414.013.102

  • Ferreira, J. et al. Brazil’s environmental leadership at risk. Science 346, 706–707 (2014).

    Article 
    CAS 

    Google Scholar 

  • Villén-Pérez, S., Anaya-Valenzuela, L., Conrado da Cruz, D. & Fearnside, P. Mining threatens isolated indigenous peoples in the Brazilian Amazon. Glob. Environ. Change 72, 102398 (2022).

    Article 

    Google Scholar 

  • Tollefson, J. Illegal mining in the Amazon hits record high amid Indigenous protests. Nature 598, 15–16 (2021).

    Article 
    CAS 

    Google Scholar 

  • Silva, C. et al. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 5, 144–145 (2021).

    Article 

    Google Scholar 

  • Vale, M. et al. The COVID-19 pandemic as an opportunity to weaken environmental protection in Brazil. Biol. Conserv. 255, 108994 (2021).

    Article 

    Google Scholar 

  • Charlier, P. & Varison, L. Is COVID-19 being used as a weapon against Indigenous Peoples in Brazil? Lancet 396, 1069–1070 (2020).

    Article 
    CAS 

    Google Scholar 

  • Davidson, E. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).

    Article 
    CAS 

    Google Scholar 

  • Ferrante, L. & Fearnside, P. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).

    Article 

    Google Scholar 

  • PRODES Legal Amazon Deforestation Monitoring System (INPE, 2020); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes

  • Hansen, M. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    CAS 

    Google Scholar 

  • Qin, Y. et al. Annual dynamics of forest areas in South America during 2007–2010 at 50 m spatial resolution. Remote Sens. Environ. 201, 73–87 (2017).

    Article 

    Google Scholar 

  • Collection 6 of the Annual Land Use Land Cover Maps of Brazil (MapBiomas Project, accessed 10 July 2022); https://mapbiomas.org/en

  • Tree Cover Loss (Global Forest Watch, 2021); https://www.globalforestwatch.org/map/?modalMeta=tree_cover_loss

  • Fuller, C., Ondei, S., Brook, B. & Buettel, J. Protected-area planning in the Brazilian Amazon should prioritize additionality and permanence, not leakage mitigation. Biol. Conserv. 248, 108673 (2020).

    Article 

    Google Scholar 

  • Nolte, C., Agrawal, A., Silvius, K. & Soares, B. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).

    Article 
    CAS 

    Google Scholar 

  • Tesfaw, A. et al. Land-use and land-cover change shape the sustainability and impacts of protected areas. Proc. Natl Acad. Sci. USA 115, 2084–2089 (2018).

    Article 
    CAS 

    Google Scholar 

  • OECD Environmental Performance Reviews: Brazil (OECD, 2015).

  • Campos-Silva, J. et al. Sustainable-use protected areas catalyze enhanced livelihoods in rural Amazonia. Proc. Natl Acad. Sci. USA 118, e2105480118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Fearnside, P., Nogueira, E. & Yanai, A. Maintaining carbon stocks in extractive reserves in Brazilian Amazonia. Desenvolv. Meio. Ambie. 48, 446–476 (2018).

    Google Scholar 

  • Nelson, A. & Chomitz, K. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).

    Article 
    CAS 

    Google Scholar 

  • BenYishay, A., Heuser, S., Runfola, D. & Trichler, R. Indigenous land rights and deforestation: evidence from the Brazilian Amazon. J. Environ. Econ. Manag. 86, 29–47 (2017).

    Article 

    Google Scholar 

  • Bonilla-Mejía, L. & Higuera-Mendieta, I. Protected areas under weak institutions: evidence from Colombia. World Dev. 122, 585–596 (2019).

    Article 

    Google Scholar 

  • Baragwanath, K. & Bayi, E. Collective property rights reduce deforestation in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 117, 20495–20502 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mangonnet, J., Kopas, J. & Urpelainen, J. Playing politics with environmental protection: the political economy of designating protected areas. J. Politics 84, 1453–1468 (2022).

    Article 

    Google Scholar 

  • Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).

    Article 
    CAS 

    Google Scholar 

  • Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    Article 
    CAS 

    Google Scholar 

  • West, T. & Fearnside, P. Brazil’s conservation reform and the reduction of deforestation in Amazonia. Land Use Policy 100, 105072 (2021).

    Article 

    Google Scholar 

  • Soares-Filho, B. et al. Cracking Brazil’s forest code. Science 344, 363–364 (2014).

    Article 
    CAS 

    Google Scholar 

  • Ferrante, L. & Fearnside, P. Military forces and COVID-19 as smokescreens for Amazon destruction and violation of indigenous rights. J. Geogr. Soc. 151, 258–263 (2020).

    Google Scholar 

  • Jiménez-Muñoz, J. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).

    Article 

    Google Scholar 

  • Ferrante, L. & Fearnside, P. The Amazon’s road to deforestation. Science 369, 634–634 (2020).

    Article 

    Google Scholar 

  • Feng, X. et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 597, 516–521 (2021).

    Article 
    CAS 

    Google Scholar 

  • Aragão, L. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Article 

    Google Scholar 

  • Silva, J., Barbosa, L., Topf, J., Vieira, I. & Scarano, F. Minimum costs to conserve 80% of the Brazilian Amazon. Perspect. Ecol. Conserv. 20, 216–222 (2022).

    Google Scholar 

  • Lovejoy, T. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).

    Article 

    Google Scholar 

  • Xiao, X., Biradar, C., Czarnecki, C., Alabi, T. & Keller, M. A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia. Remote Sens. 1, 355–374 (2009).

    Article 

    Google Scholar 

  • Natural Protected Areas and Indigenous Territories Maps in Brazil (RAISG, 2018); https://www.amazoniasocioambiental.org/en/


  • Source: Ecology - nature.com

    Higher-order interactions shape microbial interactions as microbial community complexity increases

    Genetic diversity and structure in wild Robusta coffee (Coffea canephora A. Froehner) populations in Yangambi (DR Congo) and their relation to forest disturbance