in

Genome-wide sequencing identifies a thermal-tolerance related synonymous mutation in the mussel, Mytilisepta virgata

  • Orr, H. A. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6, 119–127 (2005).

    Article 
    CAS 

    Google Scholar 

  • Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    Article 

    Google Scholar 

  • Exposito-Alonso, M., Burbano, H. A., Bossdorf, O., Nielsen, R. & Weigel, D. Natural selection on the Arabidopsis thaliana genome in present and future climates. Nature 573, 126–129 (2019).

    Article 
    CAS 

    Google Scholar 

  • Han, G., Wang, W. & Dong, Y. Effects of balancing selection and microhabitat temperature variations on heat tolerance of the intertidal black mussel Septifer virgatus. Integr. Zool. 15, 416–427 (2020).

    Article 

    Google Scholar 

  • Meester, L. D., Stoks, R. & Brans, K. I. Genetic adaptation as a biological buffer against climate change: Potential and limitations. Integr. Zool. 13, 372–391 (2018).

    Article 

    Google Scholar 

  • Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    Article 
    CAS 

    Google Scholar 

  • Günter, F. et al. Genotype-environment interactions rule the response of a widespread butterfly to temperature variation. J. Evol. Biol. 33, 920–929 (2020).

    Article 

    Google Scholar 

  • Lowry, D. B. et al. QTL × environment interactions underlie adaptive divergence in switchgrass across a large latitudinal gradient. Proc. Natl Acad. Sci. USA 116, 12933–12941 (2019).

    Article 
    CAS 

    Google Scholar 

  • Bates, A. E. et al. Biologists ignore ocean weather at their peril. Nature 560, 299–301 (2018).

    Article 
    CAS 

    Google Scholar 

  • Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences of codon bias. Nat. Rev. Genet. 12, 32–42 (2011).

    Article 
    CAS 

    Google Scholar 

  • Zhao, F. et al. Genome-wide role of codon usage on transcription and identification of potential regulators. Proc. Natl Acad. Sci. USA 118, e2022590118 (2021).

  • Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Bio. 19, 20–30 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chen, S. et al. Codon-resolution analysis reveals a direct and context-dependent impact of individual synonymous mutations on mRNA level. Mol. Biol. Evol. 34, 2944–2958 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wu, Z. et al. Expression level is a major modifier of the fitness landscape of a protein coding gene. Nat. Ecol. Evol. 6, 103–115 (2022).

    Article 

    Google Scholar 

  • Lebeuf-Taylor, E., McCloskey, N., Bailey, S. F., Hinz, A. & Kassen, R. The distribution of fitness effects among synonymous mutations in a gene under directional selection. ELife. 8, e45952 (2019).

  • Bailey, S. F., Hinz, A. & Kassen, R. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population. Nat. Commun. 5, 4076 (2014).

  • Agashe, D. et al. Large-effect beneficial synonymous mutations mediate rapid and parallel adaptation in a bacterium. Mol. Biol. Evol. 33, 1542–1553 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zhao, Y. et al. Synonymous mutation in growth regulating factor 15 of miR396a target sites enhances photosynthetic efficiency and heat tolerance in poplar. J. Exp. Bot. 72, 4502–4519 (2021).

    Article 
    CAS 

    Google Scholar 

  • Somero, G. N. The physiology of global change: linking patterns to mechanisms. Annu. Rev. Mar. Sci. 4, 39–61 (2012).

    Article 

    Google Scholar 

  • Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).

    Article 
    CAS 

    Google Scholar 

  • Helmuth, B., Mieszkowska, N., Moore, P. & Hawkins, S. J. Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev. Ecol. Evol. Syst. 37, 373–404 (2006).

    Article 

    Google Scholar 

  • Seabra, R., Wethey, D. S., Santos, A. M. & Lima, F. P. Side matters: microhabitat influence on intertidal heat stress over a large geographical scale. J. Exp. Mar. Biol. Ecol. 400, 200–208 (2011).

    Article 

    Google Scholar 

  • Schmidt, P. S. & Rand, D. M. Intertidal microhabitat and selection at MPI: interlocus contrasts in the Northern Acorn Barnacle, Semibalanus balanoides. Evolution 53, 135 (1999).

    Google Scholar 

  • Li, X., Tan, Y., Sun, Y., Wang, J. & Dong, Y. Microhabitat temperature variation combines with physiological variation to enhance thermal resilience of the intertidal mussel Mytilisepta virgata. Funct. Ecol. 35, 2497–2507 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dong, Y. et al. Untangling the roles of microclimate, behaviour and physiological polymorphism in governing vulnerability of intertidal snails to heat stress. Proc. Royal. Soc. B. 284, (2017).

  • Li, X. & Dong, Y. Living on the upper intertidal mudflat: different behavioral and physiological responses to high temperature between two sympatric Cerithidea snails with divergent habitat-use strategies. Mar. Environ. Res. 159, 105015 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, J., Peng, X. & Dong, Y. High abundance and reproductive output of an intertidal limpet (Siphonaria japonica) in environments with high thermal predictability. Mar. Life. Sci. Tech. 2, 324–333 (2020).

    Article 

    Google Scholar 

  • Dong, Y., Liao, M., Han, G. & Somero, G. N. An integrated, multi-level analysis of thermal effects on intertidal molluscs for understanding species distribution patterns. Biol. Rev. 97, 554–581 (2022).

    Article 

    Google Scholar 

  • Georges, A., Gros, P. & Fodil, N. USP15: a review of its implication in immune and inflammatory processes and tumor progression. Genes Immun. 22, 12–23 (2021).

    Article 
    CAS 

    Google Scholar 

  • Vlasschaert, C., Xia, X., Coulombe, J. & Gray, D. A. Evolution of the highly networked deubiquitinating enzymes USP4, USP15, and USP11. BMC Evol. Biol. 15, 230 (2015).

  • Mallard, F., Nolte, V., Tobler, R., Kapun, M. & Schlötterer, C. A simple genetic basis of adaptation to a novel thermal environment results in complex metabolic rewiring in Drosophila. Genome Biol. 19, 119 (2018).

  • Cornelissen, T. et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum. Mol. Genet. 23, 5227–5242 (2014).

    Article 
    CAS 

    Google Scholar 

  • Morton, B. The biology and functional morphology of Septifer bilocularis and Mytilisepta virgata (Bivalvia: Mytiloidea) from corals and the exposed rocky shores, respectively, of Hong Kong. Reg. Stud. Mar. Sci. 235, 485–500 (1995).

    Google Scholar 

  • Boroda, A. V., Kipryushina, Y. O. & Odintsova, N. A. The effects of cold stress on Mytilus species in the natural environment. Cell Stress Chaperones 25, 821–832 (2020).

    Article 
    CAS 

    Google Scholar 

  • Thayer, C. W. Brachiopods versus mussels: competition, predation, and palatability. Science 228, 1527–1528 (1985).

    Article 
    CAS 

    Google Scholar 

  • Iorio, R., Celenza, G. & Petricca, S. Mitophagy: molecular mechanisms, new concepts on Parkin activation and the emerging role of AMPK/ULK1 Axis. Cells 11, 30 (2022).

    Article 
    CAS 

    Google Scholar 

  • Feidantsis, K. et al. Correlation between intermediary metabolism, Hsp gene expression, and oxidative stress-related proteins in long-term thermal-stressed Mytilus galloprovincialis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319, R264–R281 (2020).

    Article 
    CAS 

    Google Scholar 

  • Heise, K., Puntarulo, S., Portner, H. O. & Abele, D. Production of reactive oxygen species by isolated mitochondria of the Antarctic bivalve Laternula elliptica (King and Broderip) under heat stress. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 134, 79–90 (2003).

    Article 
    CAS 

    Google Scholar 

  • Abele, D., Heise, K., Portner, H. O. & Puntarulo, S. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 205, 1831–1841 (2002).

    Article 
    CAS 

    Google Scholar 

  • Xiao, Q. et al. Transcriptome analysis reveals the molecular mechanisms of heterosis on thermal resistance in hybrid abalone. BMC Genom. 22, 650 (2021).

  • Li, L. et al. Heat stress induces apoptosis through a Ca2+-mediated mitochondrial apoptotic pathway in human umbilical vein endothelial cells. PLoS ONE 9, e111083 (2014).

    Article 

    Google Scholar 

  • Gu, Z. T. et al. Heat stress induced apoptosis is triggered by transcription-independent p53, Ca2+ dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci. Rep. 5, 11497 (2015).

    Article 
    CAS 

    Google Scholar 

  • Gerdol, M., De Moro, G., Venier, P. & Pallavicini, A. Analysis of synonymous codon usage patterns in sixty-four different bivalve species. Peer J. 3, e1520 (2015).

    Article 

    Google Scholar 

  • Zhou, M. et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature 495, 111–115 (2013).

    Article 
    CAS 

    Google Scholar 

  • Yu, C. et al. Codon usage influences the local rate of translation elongation to tegulate co-translational protein folding. Mol. Cell 59, 744–754 (2015).

    Article 
    CAS 

    Google Scholar 

  • Spencer, P. S., Siller, E., Anderson, J. F. & Barral, J. M. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 422, 328–335 (2012).

    Article 
    CAS 

    Google Scholar 

  • Pechmann, S., Chartron, J. W. & Frydman, J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat. Struct. Mol. Biol. 21, 1100–1105 (2014).

    Article 
    CAS 

    Google Scholar 

  • Kimchi-Sarfaty, C. et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525–528 (2007).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Z. et al. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl Acad. Sci. USA 113, E6117–E6125 (2016).

    Article 
    CAS 

    Google Scholar 

  • Shabalina, S. A., Spiridonov, N. A. & Kashina, A. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res. 41, 2073–2094 (2013).

    Article 
    CAS 

    Google Scholar 

  • Liao, M., Dong, Y. & Somero, G. N. Thermal adaptation of mRNA secondary structure: stability versus lability. Proc. Natl Acad. Sci. USA 118, e2113324118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wan, Y. et al. Genome-wide measurement of RNA folding energies. Mol. Cell. 48, 169–181 (2012).

    Article 

    Google Scholar 

  • Seffens, W. & Digby, D. mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27, 1578–1584 (1999).

    Article 
    CAS 

    Google Scholar 

  • Faure, G., Ogurtsov, A. Y., Shabalina, S. A. & Koonin, E. V. Role of mRNA structure in the control of protein folding. Nucleic Acids Res. 44, 10898–10911 (2016).

    Article 
    CAS 

    Google Scholar 

  • Victor, M. P., Acharya, D., Begum, T. & Ghosh, T. C. The optimization of mRNA expression level by its intrinsic properties-Insights from codon usage pattern and structural stability of mRNA. Genomics 111, 1292–1297 (2019).

    Article 
    CAS 

    Google Scholar 

  • Backlund, M. & Kulozik, A. E. Differential analysis of the nuclear and the cytoplasmic RNA interactomes in living cells. Methods Mol. Biol. 2428, 291–304 (2022).

    Article 

    Google Scholar 

  • Zaghlool, A. et al. Characterization of the nuclear and cytosolic transcriptomes in human brain tissue reveals new insights into the subcellular distribution of RNA transcripts. Sci. Rep. 11, 4076 (2021).

  • Clark, M. S. et al. Life in the intertidal: cellular responses, methylation and epigenetics. Funct. Ecol. 32, 1982–1994 (2018).

    Article 

    Google Scholar 

  • Jeremias, G. et al. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol. Ecol. 27, 2790–2806 (2018).

    Article 

    Google Scholar 

  • Li, L. et al. Divergence and plasticity shape adaptive potential of the Pacific oyster. Nat. Ecol. Evol. 2, 1751–1760 (2018).

    Article 

    Google Scholar 

  • Chu, D. & Wei, L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer. 19, 359 (2019).

  • Lima, F. P. & Wethey, D. S. Robolimpets: measuring intertidal body temperatures using biomimetic loggers. Limol. Oceanogr. Methods 7, 347–353 (2009).

    Article 

    Google Scholar 

  • Dong, Y. & Williams, G. A. Variations in cardiac performance and heat shock protein expression to thermal stress in two differently zoned limpets on a tropical rocky shore. Mar. Biol. 158, 1223–1231 (2011).

    Article 

    Google Scholar 

  • Vito, M. Segmented: An R Package to fit regression models with broken-line relationships. R. N. 8, 20–25 (2008).

    Google Scholar 

  • R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2021).

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article 

    Google Scholar 

  • Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience. 10, giab008 (2021).

  • Rochette, N. C., Rivera Colón, A. G. & Catchen, J. M. Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).

    Article 
    CAS 

    Google Scholar 

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 

    Google Scholar 

  • Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article 

    Google Scholar 

  • Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article 
    CAS 

    Google Scholar 

  • Hao, Z. et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput. Sci. 6, e251 (2020).

    Article 

    Google Scholar 

  • Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    Article 
    CAS 

    Google Scholar 

  • Letunic, I., Khedkar, S. & Bork, P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 49, D458–D460 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    Article 
    CAS 

    Google Scholar 

  • Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

  • Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic Acids Res. 43, W39–W49 (2015).

    Article 
    CAS 

    Google Scholar 

  • Mathews, D. H. et al. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl Acad. Sci. USA 101, 7287–7292 (2004).

    Article 
    CAS 

    Google Scholar 

  • Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).

    Article 
    CAS 

    Google Scholar 

  • Moyen, N. E., Somero, G. N. & Denny, M. W. Mussels’ acclimatization to high, variable temperatures is lost slowly upon transfer to benign conditions. J. Exp. Biol. 223, Pt 13 (2020).

    Google Scholar 

  • Havird, J. C. et al. Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to Q10 effects: why methodology matters. Funct. Ecol. 34, 1015–1028 (2020).

    Article 

    Google Scholar 

  • Panova, M. et al. DNA extraction protocols for whole-genome sequencing in marine organisms. Methods Mol. Biol. 1452, 13–44 (2016).

    Article 
    CAS 

    Google Scholar 

  • Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

    Article 
    CAS 

    Google Scholar 

  • Gerdol, M. et al. The purplish bifurcate mussel Mytilisepta virgata gene expression atlas reveals a remarkable tissue functional specialization. BMC Genomics. 18, 590 (2017).

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408 (2001).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Bee species perform distinct foraging behaviors that are best described by different movement models

    Alfred Russel Wallace’s first expedition ended in flames