Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 4621 (2020).
Google Scholar
Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).
Google Scholar
Overland, J. E. et al. Surface air temperature. In Arctic Report Card: Update for 2019 (eds Richter-Menge, J. et al.) (U.S. National Park Service, 2020).
Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).
Google Scholar
Diepstraten, R. A. E., Jessen, T. D., Fauvelle, C. M. D. & Musiani, M. M. Does climate change and plant phenology research neglect the Arctic tundra?. Ecosphere 9, e02362 (2018).
Google Scholar
Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).
Google Scholar
Billings, W. D. & Bliss, L. C. An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40, 388–397 (1959).
Google Scholar
Billings, W. D. & Mooney, H. A. The ecology of arctic and alpine plants. Biol. Rev. 43, 481–529 (1968).
Google Scholar
Sørensen, T. Temperature relations and phenology of the northeast Greenland flowering plants. Meddr Gronland 1–305 (1941).
Barrett, R. T. & Hollister, R. D. Arctic plants are capable of sustained responses to long-term warming. Polar Res. 35, 25405 (2016).
Google Scholar
Julitta, T. et al. Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agric. For. Meteorol. 198–199, 116–125 (2014).
Google Scholar
Petraglia, A. et al. Responses of flowering phenology of snowbed plants to an experimentally imposed extreme advanced snowmelt. Plant Ecol. 215, 759–768 (2014).
Google Scholar
Semenchuk, P. R. et al. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: An example of periodicity. Environ. Res. Lett. 11, 125006 (2016).
Google Scholar
Hollister, R. D., Webber, P. J. & Bay, C. Plant response to temperature in northern Alaska: Implications for predicting vegetation change. Ecology 86, 1562–1570 (2005).
Google Scholar
Oberbauer, S. et al. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120481 (2013).
Google Scholar
Tieszen, L. L. Photosynthesis in the principal Barrow, Alaska, species: A summary of field and laboratory responses. In Vegetation and Production Ecology of an Alaskan Arctic Tundra (ed. Tieszen, L. L.) 241–268 (Springer, 1978).
Google Scholar
Körner, Ch. CO2 exchange in the alpine sedge Carex curvula as influenced by canopy structure, light and temperature. Oecologia 53, 98–104 (1982).
Google Scholar
Tieszen, L. L. Photosynthesis and respiration in arctic tundra grasses: Field light intensity and temperature responses. Arct. Alp. Res. 5, 239–251 (1973).
Google Scholar
Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).
Google Scholar
Marchand, F. L., Mertens, S., Kockelbergh, F., Beyens, L. & Nijs, I. Performance of high arctic tundra plants improved during but deteriorated after exposure to a simulated extreme temperature event. Glob. Change Biol. 11, 2078–2089 (2005).
Google Scholar
Yan, W. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 84, 607–614 (1999).
Google Scholar
Zhou, G. & Wang, Q. A new nonlinear method for calculating growing degree days. Sci. Rep. 8, 10149 (2018).
Google Scholar
Kramer, K. Selecting a model to predict the onset of growth of Fagus sylvatica. J. Appl. Ecol. 31, 172 (1994).
Google Scholar
Nakano, Y., Higuchi, Y., Sumitomo, K. & Hisamatsu, T. Flowering retardation by high temperature in chrysanthemums: Involvement of FLOWERING LOCUS T-like 3 gene repression. J. Exp. Bot. 64, 909–920 (2013).
Google Scholar
del Olmo, I., Poza-Viejo, L., Piñeiro, M., Jarillo, J. A. & Crevillén, P. High ambient temperature leads to reduced FT expression and delayed flowering in Brassica rapa via a mechanism associated with H2A.Z dynamics. Plant J. 100, 343–356 (2019).
Google Scholar
Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494 (2012).
Google Scholar
Hollister, R. D. et al. A review of open top chamber (OTC) performance across the ITEX Network. Arct. Sci. https://doi.org/10.1139/AS-2022-0030 (2022).
Google Scholar
Bütikofer, L. et al. The problem of scale in predicting biological responses to climate. Glob. Change Biol. 26, 6657–6666 (2020).
Google Scholar
Gu, S. Growing degree hours—A simple, accurate, and precise protocol to approximate growing heat summation for grapevines. Int. J. Biometeorol. 60, 1123–1134 (2016).
Google Scholar
Roltsch, W. J., Zalom, F. G., Strawn, A. J., Strand, J. F. & Pitcairn, M. J. Evaluation of several degree-day estimation methods in California climates. Int. J. Biometeorol. 42, 169–176 (1999).
Google Scholar
Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371 (2018).
Google Scholar
Ettinger, A. K., Buonaiuto, D. M., Chamberlain, C. J., Morales-Castilla, I. & Wolkovich, E. M. Spatial and temporal shifts in photoperiod with climate change. New Phytol. 230, 462–474 (2021).
Google Scholar
Seyednasrollah, B., Swenson, J. J., Domec, J.-C. & Clark, J. S. Leaf phenology paradox: Why warming matters most where it is already warm. Remote Sens. Environ. 209, 446–455 (2018).
Google Scholar
Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. New Phytol. 231, 32–39 (2021).
Google Scholar
Chaudhry, S. & Sidhu, G. P. S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 41, 1–31 (2022).
Google Scholar
Sun, X. et al. Global diurnal temperature range (DTR) changes since 1901. Clim. Dyn. 52, 3343–3356 (2019).
Google Scholar
Ballinger, T. J. NOAA Arctic Report Card 2021: Surface Air Temperature. https://doi.org/10.25923/53XD-9K68 (2021).
Jagadish, S. V. K., Way, D. A. & Sharkey, T. D. Plant heat stress: Concepts directing future research. Plant Cell Environ. 44, 1992–2005 (2021).
Google Scholar
Gilmore, E. C. Jr. & Rogers, J. S. Heat units as a method of measuring maturity in corn. Agron. J. 50, 611–615 (1958).
Google Scholar
Sánchez, B., Rasmussen, A. & Porter, J. R. Temperatures and the growth and development of maize and rice: A review. Glob. Change Biol. 20, 408–417 (2014).
Google Scholar
Molitor, D., Junk, J., Evers, D., Hoffmann, L. & Beyer, M. A high-resolution cumulative degree day-based model to simulate phenological development of grapevine. Am. J. Enol. Vitic. 65, 72–80 (2014).
Google Scholar
CaraDonna, P. J., Iler, A. M. & Inouye, D. W. Shifts in flowering phenology reshape a subalpine plant community. Proc. Natl. Acad. Sci. 111, 4916–4921 (2014).
Google Scholar
Inouye, B. D., Ehrlén, J. & Underwood, N. Phenology as a process rather than an event: From individual reaction norms to community metrics. Ecol. Monogr. 89, e01352 (2019).
Google Scholar
Miles, W. T. S. et al. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds. Glob. Change Biol. 23, 1400–1414 (2017).
Google Scholar
Moussus, J.-P., Julliard, R. & Jiguet, F. Featuring 10 phenological estimators using simulated data. Methods Ecol. Evol. 1, 140–150 (2010).
Google Scholar
Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’ (2019).
Auguie, B. egg: Extensions for ‘ggplot2’: Custom Geom, Custom Themes, Plot Alignment, Labelled Panels, Symmetric Scales, and Fixed Panel Size (2019).
Wood, S. & Scheipl, F. gamm4: Generalized Additive Mixed Models using ‘mgcv’ and ‘lme4’ (2020).
Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics (2017).
Hamner, B. & Frasco, M. Metrics: Evaluation Metrics for Machine Learning (2018).
Gilli, M., Maringer, D. & Schumann, E. Numerical Methods and Optimization in Finance (Elsevier/Academic Press, 2019).
Google Scholar
Garnier, S. viridis: Default Color Maps from ‘matplotlib’ (2018).
Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
Google Scholar
Source: Ecology - nature.com