in

Underrated past herbivore densities could lead to misoriented sustainability policies

  • Pausas, J. G. & Bond, W. J. On the three major recycling pathways in terrestrial ecosystems. Trends Ecol. Evol. 35, 767–775 (2020).

    Google Scholar 

  • Manzano, P. & White, S. R. Intensifying pastoralism may not reduce greenhouse gas emissions: wildlife-dominated landscape scenarios as a baseline in life cycle analysis. Clim. Res. 77, 91–97 (2019).

    Google Scholar 

  • Röös, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Change 47, 1–12 (2017).

    Google Scholar 

  • Harwatt, H., Ripple, W. J., Chaudhary, A., Betts, M. G. & Hayek, M. N. Scientists call for renewed Paris pledges to transform agriculture. Lancet Planet. Health 4, E9–E10 (2020).

    Google Scholar 

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS 

    Google Scholar 

  • Barnosky, A. D. Megafauna biomass trade-off as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008).

    CAS 

    Google Scholar 

  • Smith, F. A. et al. Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget. Proc. Natl Acad. Sci. USA 113, 874–879 (2016).

    CAS 

    Google Scholar 

  • Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, F. S. III Mammoth steppe: a high-productivity phenomenon. Quat. Sci. Rev. 57, 26–45 (2012).

    Google Scholar 

  • Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M. & Woodward, F. I. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348, 711–714 (1990).

    CAS 

    Google Scholar 

  • Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).

    Google Scholar 

  • Bond, W. J. Open Ecosystems: Ecology and Evolution Beyond the Forest Edge (Oxford Univ. Press, 2019).

  • Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).

    CAS 

    Google Scholar 

  • Carpio Camargo, A. J. et al. Assessing red deer hunting management in the Iberian Peninsula: the importance of longitudinal studies. PeerJ 9, e10872 (2021).

    Google Scholar 

  • Gordon, I. J., Manning, A. D., Navarro, L. M. & Rouet-Leduc, J. Domestic livestock and rewilding: are they mutually exclusive? Front. Sustain. Food Syst. 5, 550410 (2021).

    Google Scholar 

  • Bond, W. J. Large parts of the world are brown or black: a different view on the ‘Green World’ hypothesis. J. Veg. Sci. 16, 261–266 (2005).

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • ESRI. ArcGIS Desktop: Release 10.3. (Environmental Systems Research Institute, Redlands, CA, 2014).

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    Google Scholar 

  • Fløjgaard, C., Pedersen, P. B. M., Sandom, C. J., Svenning, J.-C. & Ejrnæs, R. Exploring a natural baseline for large-herbivore biomass in ecological restoration. J. Appl. Ecol. 59, 18–24 (2022).

    Google Scholar 

  • Haller, T. et al. Conflicts, security and marginalisation: institutional change of the pastoral commons in a ‘glocal’ world. Rev. Sci. Tech. Off. Int. Epiz. 35, 405–416 (2016).

    CAS 

    Google Scholar 

  • Torrents-Ticó, M., Fernández-Llamazares, A., Burgas, D. & Cabeza, M. Convergences and divergences between scientific and Indigenous and Local Knowledge contribute to inform carnivore conservation. Ambio 50, 990–1002 (2021).

    Google Scholar 

  • Griffith, E. F., Pius, L., Manzano, P. & Jost, C. C. COVID-19 in pastoral contexts in the greater Horn of Africa: implications and recommendations. Pastoralism 10, 1–12 (2020).

    Google Scholar 

  • Schieltz, J. M. & Rubenstein, D. I. Evidence-based review: positive versus negative effects of livestock grazing on wildlife. What do we really know? Environ. Res. Lett. 11, 113003 (2016).

    Google Scholar 

  • García Sanz, A. La ganadería española entre 1750–1865: los efectos de la reforma agraria liberal. Agricultura y Sociedad 72, 81–120 (1991).

    Google Scholar 

  • San Miguel, A., Roig, S. & Perea, R. The pastures of Spain. Pastos 46, 6–39 (2016).

    Google Scholar 

  • Epp, H. & Dyck, I. Early human-bison population interdependence in the Plains ecosystem. Gt. Plains Res. 12, 323–337 (2002).

    Google Scholar 

  • Hristov, A. N. Historic, pre-European settlement, and present-day contribution of wild ruminants to enteric methane emissions in the United States. J. Anim. Sci 90, 1371–1375 (2012).

    CAS 

    Google Scholar 

  • Bond, W. J. Ancient grasslands at risk. Science 351, 120–122 (2016).

    CAS 

    Google Scholar 

  • Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).

    Google Scholar 

  • Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).

    CAS 

    Google Scholar 

  • Swette, B. & Lambin, E. F. Institutional changes drive land use transitions on rangelands: the case of grazing on public lands in the American West. Glob. Environ. Change 66, 102220 (2021).

    Google Scholar 

  • Hayek, M. N., Harwatt, H., Ripple, W. J. & Mueller, N. D. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain. 4, 21–24 (2021).

    Google Scholar 

  • Kristensen, J. A., Svenning, J.-C., Georgiou, K. & Mahli, Y. Can large herbivores enhance ecosystem carbon persistence? Trends Ecol. Evol. 37, 117–128 (2022).

    CAS 

    Google Scholar 

  • Carmona, C. P., Azcárate, F. M., Oteros-Rozas, E., González, J. A. & Peco, B. Assessing the effects of seasonal grazing on holm oak regeneration: Implications for the conservation of Mediterranean dehesas. Biol. Cons. 159, 240–247 (2013).

    Google Scholar 

  • García-Fernández, A. et al. Herbivore corridors sustain genetic footprint in plant populations: a case for Spanish drove roads. PeerJ 7, e7311 (2019).

    Google Scholar 

  • Scoones, I. Living with Uncertainty: New Directions in Pastoralism Development in Africa, Ch. 1 (ITDG, 1995).

  • Pardo, G., Casas, R., del Prado, A. & Manzano, P. Carbon footprint of transhumant sheep farms: accounting for natural baseline emissions in Mediterranean systems. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-1838904/v1 (2022).

  • Odhiambo, M. & Manzano, P. Making Way. Developing National Legal and Policy Frameworks for Pastoral Mobility (FAO, 2022).

  • del Prado, A., Manzano, P. & Pardo, G. The role of the European small ruminant dairy sector on stabilizing global temperatures: lessons from GWP* warming-equivalent emission metrics. J. Dairy Res. 8, 8–15 (2021).

    Google Scholar 

  • Molina-Flores, B., Manzano-Baena, P. & Coulibaly, M. A. The Role of Livestock in Food Security, Poverty Reduction and Wealth Creation in West Africa (FAO, 2020).

  • Lasanta, T., Cortijos-López, M., Errea, M. P., Khorchani, M. & Nadal-Romero, E. An environmental management experience to control wildfires in the mid-mountain Mediterranean area: shrub clearing to generate mosaic landscapes. Land Use Policy 118, 106147 (2022).

    Google Scholar 

  • Torres-Miralles, M. et al. Contribution of High Nature Value farming systems to sustainable livestock production: a case from Finland. Sci. Total Environ. 839, 156267 (2022).

    CAS 

    Google Scholar 

  • Manzano, P. et al. Towards a holistic understanding of pastoralism. One Earth 4, 651–665 (2021).

    Google Scholar 

  • Karlsson, J. O., Parodi, A., Van Zanten, H. H., Hansson, P. A. & Röös, E. Halting European Union soybean feed imports favours ruminants over pigs and poultry. Nat. Food 2, 38–46 (2021).

    Google Scholar 

  • Leroy, F. et al. Transformation of animal agriculture should be evidence-driven and respectful of livestock’s benefits and contextual aspects. Animal 16, 100644 (2022).

    Google Scholar 

  • Jackson, R. D. Grazed perennial grasslands can match current beef production while contributing to climate mitigation and adaptation. Agric. Environ. Lett. 7, e20059 (2022).

    Google Scholar 

  • Mahli, Y. et al. The role of large wild animals in climate change mitigation and adaptation. Curr. Biol. 32, R181–R196 (2022).

    Google Scholar 

  • O’Bryan, C. J. et al. Unrecognized threat to global soil carbon by a widespread invasive species. Glob. Change Biol. 28, 877–882 (2022).

    Google Scholar 

  • Karp, A. T., Faith, J. T., Marlon, J. R. & Straver, A. C. Global response of fire activity to late Quaternary grazer extinctions. Science 374, 1145–1148 (2021).

    CAS 

    Google Scholar 

  • Ripple, W. J. et al. World scientists’ warning of a climate emergency 2021. Bioscience 71, 894–898 (2021).

    Google Scholar 

  • Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).

    Google Scholar 

  • Mann, D. H., Groves, P., Kunz, M. L., Reanier, R. E. & Gaglioti, B. V. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quat. Sci. Rev. 70, 91–108 (2013).

    Google Scholar 

  • Sandom, C., Faurby, S., Sandel, B. & Svenning, J. C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. Royal Soc. B 281, 20133254 (2014).

    Google Scholar 

  • Fariña, R. A., Czerwonogora, A. & di Giacomo, M. Splendid oddness: revisiting the curious trophic relationships of South American Pleistocene mammals and their abundance. An. Acad. Bras. Ciênc. 86, 311–331 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    New MIT internships expand research opportunities in Africa

    Bacterial response to glucose addition: growth and community structure in seawater microcosms from North Pacific Ocean