Feit, B. et al. Landscape complexity promotes resilience of biological pest control to climate change. Proc. R. Soc. B. 288, 20210547 (2021).
Google Scholar
Hall-Spencer, J. M. & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 3, 197–206 (2019).
Google Scholar
Loke, L. H. L. & Todd, P. A. Structural complexity and component type increase intertidal biodiversity independently of area. Ecology 97, 383–393 (2016).
Google Scholar
Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends in Ecol. Evol. 30, 673–684 (2015).
Google Scholar
Bullock, J. M. et al. Future restoration should enhance ecological complexity and emergent properties at multiple scales. Ecography ecog. 4, 05780 (2022).
Ortega, J. C. G., Thomaz, S. M. & Bini, L. M. Experiments reveal that environmental heterogeneity increases species richness, but they are rarely designed to detect the underlying mechanisms. Oecologia 188, 11–22 (2018).
Google Scholar
Griffin, J. N., Byrnes, J. E. K. & Cardinale, B. J. Effects of predator richness on prey suppression: a meta-analysis. Ecology 94, 2180–2187 (2013).
Google Scholar
Katano, I., Doi, H., Eriksson, B. K. & Hillebrand, H. A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. Oikos 124, 1427–1435 (2015).
Google Scholar
Loke, L. H. L., Ladle, R. J., Bouma, T. J. & Todd, P. A. Creating complex habitats for restoration and reconciliation. Ecol. Eng. 77, 307–313 (2015).
Google Scholar
Torres-Pulliza, D. et al. A geometric basis for surface habitat complexity and biodiversity. Nat. Ecol. Evol. 4, 1495–1501 (2020).
Google Scholar
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Google Scholar
Chesson, P. & Kuang, J. J. The interaction between predation and competition. Nature 456, 235–238 (2008).
Google Scholar
Terborgh, J. W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. USA 112, 11415–11422 (2015).
Google Scholar
Pringle, R. M. et al. Predator-induced collapse of niche structure and species coexistence. Nature 570, 58–64 (2019).
Google Scholar
Sandom, C. et al. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94, 1112–1122 (2013).
Google Scholar
Grabowski, J. H. Habitat complexity disrupts predator-prey interactions but not the trophic cascade on oyster reefs. Ecology 85, 995–1004 (2004).
Google Scholar
Crowder, L. B. & Cooper, W. E. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63, 1802 (1982).
Google Scholar
Almany, G. R. Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos 106, 275–284 (2004).
Google Scholar
Anderson, T. L. & Semlitsch, R. D. Top predators and habitat complexity alter an intraguild predation module in pond communities. J. Anim. Ecol. 85, 548–558 (2016).
Google Scholar
Brothers, C. A. & Blakeslee, A. M. H. Alien vs predator play hide and seek: How habitat complexity alters parasite mediated host survival. J. Exp. Mar. Biol. Ecol. 535, 151488 (2021).
Google Scholar
Horinouchi, M. et al. Seagrass habitat complexity does not always decrease foraging efficiencies of piscivorous fishes. Mar. Ecol. Prog. Ser. 377, 43–49 (2009).
Google Scholar
Ryer, C., Stoner, A. & Titgen, R. Behavioral mechanisms underlying the refuge value of benthic habitat structure for two flatfishes with differing anti-predator strategies. Mar. Ecol. Prog. Ser. 268, 231–243 (2004).
Google Scholar
Flynn, A. J. & Ritz, D. A. Effect of habitat complexity and predatory style on the capture success of fish feeding on aggregated prey. J. Mar. Biol. Ass. 79, 487–494 (1999).
Google Scholar
Klecka, J. & Boukal, D. S. The effect of habitat structure on prey mortality depends on predator and prey microhabitat use. Oecologia 176, 183–191 (2014).
Google Scholar
James, P. L. & Heck, K. L. The effects of habitat complexity and light intensity on ambush predation within a simulated seagrass habitat. J. Exp. Mar. Biol. Ecol. 176, 187–200 (1994).
Google Scholar
Michel, M. J. & Adams, M. M. Differential effects of structural complexity on predator foraging behavior. Behav. Ecol. 20, 313–317 (2009).
Google Scholar
Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).
Google Scholar
Preisser, E. L., Orrock, J. L. & Schmitz, O. J. Predator hunting mode and habitat domain alter nonconsumptive effects in predator-prey interactions. Ecology 88, 2744–2751 (2007).
Google Scholar
Rypstra, A. L., Schmidt, J. M., Reif, B. D., DeVito, J. & Persons, M. H. Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk. Oikos 116, 853–863 (2007).
Google Scholar
Janssen, A., Sabelis, M. W., Magalhães, S., Montserrat, M. & van der Hammen, T. Habitat structure affects intraguild predation. Ecology 88, 2713–2719 (2007).
Google Scholar
Grabowski, J. H., Hughes, A. R. & Kimbro, D. L. Habitat complexity influences cascading effects of multiple predators. Ecology 89, 3413–3422 (2008).
Google Scholar
Hughes, A. R. & Grabowski, J. H. Habitat context influences predator interference interactions and the strength of resource partitioning. Oecologia 149, 256–264 (2006).
Google Scholar
Bonett, D. G. Meta-analytic interval estimation for standardized and unstandardized mean differences. Psychol. Methods 14, 225–238 (2009).
Google Scholar
Huey, R. B. & Pianka, E. R. Ecological consequences of foraging mode. Ecology 62, 991–999 (1981).
Google Scholar
Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).
Google Scholar
Ritchie, E. G. & Johnson, C. N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12, 982–998 (2009).
Google Scholar
Chaplin-Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta-analysis of crop pest and natural enemy response to landscape complexity: pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
Google Scholar
Paxton, A. B. et al. Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one-size-fits-all. Front. Mar. Sci. 7, 282 (2020).
Google Scholar
Eggleston, D. B., Lipcius, R. N., Miller, D. L. & Coba-Cetina, L. Shelter scaling regulates survival of juvenile Caribbean spiny lobster Panulirus argus. Mar. Ecol. Prog. Ser. 62, 79–88 (1990).
Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2018).
Google Scholar
Gontijo, L. M. Engineering natural enemy shelters to enhance conservation biological control in field crops. Biol. Control 130, 155–163 (2019).
Google Scholar
Source: Ecology - nature.com