in

Changing plant functional diversity over the last 12,000 years provides perspectives for tracking future changes in vegetation communities

  • Wingard, G. L., Bernhardt, C. E. & Wachnicka, A. H. The role of paleoecology in restoration and resource management—the past as a guide to future decision-making: review and example from the Greater Everglades ecosystem, U.S.A. Front. Ecol. Evol 5, 11 (2017).

    Article 

    Google Scholar 

  • Gillson, L., Dirk, C. & Gell, P. Using long-term data to inform a decision pathway for restoration of ecosystem resilience. Anthropocene 36, 100315 (2021).

    Article 

    Google Scholar 

  • Nieto-Lugilde, D. et al. Time to better integrate paleoecological research infrastructures with neoecology to improve understanding of biodiversity long-term dynamics and to inform future conservation. Environ. Res. Lett. 16, 095005 (2021).

    Article 

    Google Scholar 

  • Leo, G. A. D. & Levin, S. A. The multifaceted aspects of ecosystem integrity. Conserv. Ecol. 1, 3 (1997).

    Google Scholar 

  • Mason, N. & Mouillot, D. in Encyclopedia of Biodiversity (ed. Levin, S. A.) 597–608 (Elsevier, 2013).

  • Carvalho, F. et al. A method for reconstructing temporal changes in vegetation functional trait composition using Holocene pollen assemblages. PLoS ONE 14, e0216698 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brussel, T. & Brewer, S. C. Functional paleoecology and the pollen-plant functional trait linkage. Front. Ecol. Evol 8, 564609 (2021).

    Article 

    Google Scholar 

  • Brussel, T., Minckley, T. A., Brewer, S. C. & Long, C. J. Community-level functional interactions with fire track long-term structural development and fire adaptation. J. Veg. Sci. 29, 450–458 (2018).

    Article 

    Google Scholar 

  • Barboni, D. et al. Relationships between plant traits and climate in the Mediterranean region: a pollen data analysis. J. Veg. Sci. 15, 635–646 (2004).

    Article 

    Google Scholar 

  • Reitalu, T. et al. Novel insights into post-glacial vegetation change: functional and phylogenetic diversity in pollen records. J. Veg. Sci. 26, 911–922 (2015).

    Article 

    Google Scholar 

  • Blaus, A. et al. Modern pollen-plant diversity relationships inform palaeoecological reconstructions of functional and phylogenetic diversity in calcareous fens. Front. Ecol. Evol 8, 207 (2020).

    Article 

    Google Scholar 

  • Morris, J. L. et al. Stable or seral? Fire-driven alternative states in aspen forests of western North America. Biol. Lett. 15, 20190011 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ordonez, A. & Svenning, J.-C. Greater tree species richness in eastern North America compared to Europe is coupled to denser, more clustered functional trait space filling, not to trait space expansion. Glob. Ecol. Biogeogr. 27, 1288–1299 (2018).

    Article 

    Google Scholar 

  • van der Sande, M. T. et al. A 7000-year history of changing plant trait composition in an Amazonian landscape; the role of humans and climate. Ecol. Lett. 22, 925–935 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lacourse, T. & Adeleye, M. A. Climate and species traits drive changes in Holocene forest composition along an elevation gradient in Pacific Canada. Front. Ecol. Evol 10, 838545 (2022).

    Article 

    Google Scholar 

  • Lacourse, T. Environmental change controls postglacial forest dynamics through interspecific differences in life-history traits. Ecology 90, 2149–2160 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Veeken, A., Santos, M. J., McGowan, S., Davies, A. L. & Schrodt, F. Pollen-based reconstruction reveals the impact of the onset of agriculture on plant functional trait composition. Ecol. Lett. 25, 1937–1951 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellis, E. C., Antill, E. C. & Kreft, H. All is not loss: plant biodiversity in the anthropocene. PLoS ONE 7, e30535 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • GILL, A. M. Fire and the Australian flora: a review. Aust. For. 38, 4–25 (1975).

    Article 

    Google Scholar 

  • Crisp, M. D., Burrows, G. E., Cook, L. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous–Palaeogene boundary. Nat. Commun. 2, 193 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Keith, D. A. Australian Vegetation (Cambridge Univ. Press, 2017).

  • Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proc. Natl Acad. Sci. USA 112, 4531–4540 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Broadhurst, L. & Coates, D. Plant conservation in Australia: current directions and future challenges. Plant Divers. 39, 348–356 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adeleye, M. A., Connor, S. E., Haberle, S. G., Herbert, A. & Brown, J. European colonization and the emergence of novel fire regimes in southeast Australia. Anthr. Rev. https://doi.org/10.1177/205301962110446 (2021).

  • Gallagher, R. V. et al. High fire frequency and the impact of the 2019–2020 megafires on Australian plant diversity. Divers. Distrib. 27, 1166–1179 (2021).

    Article 

    Google Scholar 

  • Gallagher, R. V. et al. An integrated approach to assessing abiotic and biotic threats to post-fire plant species recovery: lessons from the 2019–2020 Australian fire season. Glob. Ecol. Biogeogr. 31, 2056–2069.

  • Mariani, M. et al. Disruption of cultural burning promotes shrub encroachment and unprecedented wildfires. Front. Ecol. Environ. 20, 292–300 (2022).

    Article 

    Google Scholar 

  • Williams, A. N., Mooney, S. D., Sisson, S. A. & Marlon, J. Exploring the relationship between Aboriginal population indices and fire in Australia over the last 20,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 432, 49–57 (2015).

    Article 

    Google Scholar 

  • Bird, M. I., O’Grady, D. & Ulm, S. Humans, water, and the colonization of Australia. Proc. Natl Acad. Sci. USA 113, 11477–11482 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adeleye, M. A., Haberle, S. G., Connor, S. E., Stevenson, J. & Bowman, D. M. J. S. Indigenous fire-managed landscapes in Southeast Australia during the Holocene—new insights from the Furneaux Group Islands, Bass Strait. Fire 4, 17 (2021).

    Article 

    Google Scholar 

  • Fletcher, M.-S., Romano, A., Connor, S., Mariani, M. & Maezumi, S. Y. Catastrophic bushfires, Indigenous fire knowledge and reframing science in Southeast Australia. Fire 4, 61 (2021).

    Article 

    Google Scholar 

  • Fletcher, M.-S., Hall, T. & Alexandra, A. N. The loss of an indigenous constructed landscape following British invasion of Australia: an insight into the deep human imprint on the Australian landscape. Ambio 50, 138–149 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adeleye, M. A. et al. Long-term drivers of vegetation turnover in Southern Hemisphere temperate ecosystems. Glob. Ecol. Biogeogr. 30, 557–571 (2021).

    Article 

    Google Scholar 

  • Kershaw, A. P., D’Costa, D. M., McEwen Mason, J. R. C. & Wagstaff, B. E. Palynological evidence for Quaternary vegetation and environments of mainland southeastern Australia. Quat. Sci. Rev. 10, 391–404 (1991).

    Article 

    Google Scholar 

  • Colhoun, E. A. & Shimeld, P. W. in Peopled Landscapes: Archaeological and Biogeographic Approaches to Landscapes (eds. Haberle, S. G. & David, B.) 297–328 (ANU Press, 2012).

  • Madani, N. et al. Future global productivity will be affected by plant trait response to climate. Sci. Rep. 8, 2870 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Squire, D. T. et al. Likelihood of unprecedented drought and fire weather during Australia’s 2019 megafires. npj Clim. Atmos. Sci. 4, 64 (2021).

    Article 

    Google Scholar 

  • Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, e2020GL087820 (2020).

    Article 

    Google Scholar 

  • Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Arias, P. A. et al. In Climate Change 2021: The Physical Science Basis (eds. Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Laliberté, E., Legendre, P. & Shipley, B. FD: measuring (FD) from multiple traits, and other tools for functional ecology. R package version 1.0-12 (2014).

  • Laliberté, E. & Legendre, P. A distance-based framework for measuring from multiple traits. Ecology 91, 299–305 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Tilman, D. in Encyclopedia of Biodiversity (ed. Levin, S. A.) 109–120 (Elsevier, 2001).

  • Fletcher, M.-S. & Moreno, P. I. Have the Southern Westerlies changed in a zonally symmetric manner over the last 14,000 years? A hemisphere-wide take on a controversial problem. Quat. Int. 253, 32–46 (2012).

    Article 

    Google Scholar 

  • Markgraf, V., Bradbury, J. P. & Busby, J. R. Paleoclimates in Southwestern Tasmania during the last 13,000 years. PALAIOS 1, 368 (1986).

    Article 

    Google Scholar 

  • Moros, M. et al. Hydrographic shifts south of Australia over the last deglaciation and possible interhemispheric linkages. Quat. Res. 102, 130–141 (2021).

    Article 

    Google Scholar 

  • Perner, K. et al. Heat export from the tropics drives mid to late Holocene palaeoceanographic changes offshore southern Australia. Quat. Sci. Rev. 180, 96–110 (2018).

    Article 

    Google Scholar 

  • Mariani, M. & Fletcher, M.-S. Long-term climate dynamics in the extra-tropics of the South Pacific revealed from sedimentary charcoal analysis. Quat. Sci. Rev. 173, 181–192 (2017).

    Article 

    Google Scholar 

  • McWethy, D. B. et al. A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes. Glob. Ecol. Biogeogr. 22, 900–912 (2013).

    Article 

    Google Scholar 

  • Baker, A. G., Catterall, C. & Benkendorff, K. Invading rain forest pioneers initiate positive fire suppression feedbacks that reinforce shifts from open to closed forest in eastern Australia. J. Veg. Sci. 32, e13102 (2021).

    Article 

    Google Scholar 

  • Lambeck, K. & Chappell, J. Sea level change through the last glacial cycle. Science 292, 679–686 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sloss, C. R., Murray-Wallace, C. V. & Jones, B. G. Holocene sea-level change on the southeast coast of Australia: a review. Holocene 17, 999–1014 (2007).

    Article 

    Google Scholar 

  • Adeleye, M. A. et al. Holocene heathland development in temperate oceanic Southern Hemisphere: key drivers in a global context. J. Biogeogr. 48, 1048–1062 (2021).

    Article 

    Google Scholar 

  • McWethy, D. B., Haberle, S. G., Hopf, F. & Bowman, D. M. J. S. Aboriginal impacts on fire and vegetation on a Tasmanian island. J. Biogeogr. 44, 1319–1330 (2017).

    Article 

    Google Scholar 

  • Hope, G. Vegetation and fire response to late Holocene human occupation in island and mainland north west Tasmania. Quat. Int. 59, 47–60 (1999).

    Article 

    Google Scholar 

  • Sim, R. The Archaeology of Isolation? Prehistoric Occupation in the Furneaux Group of Islands, Bass Strait, Tasmania. PhD thesis, Australian National Univ. (1998).

  • Lourandos, H. Intensification: a late Pleistocene-Holocene archaeological sequence from Southwestern Victoria. Archaeol. Ocean. 18, 81–94 (1983).

    Article 

    Google Scholar 

  • Bowman, D. M. J. S. The impact of Aboriginal landscape burning on the Australian biota. New Phytol. 140, 385–410 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iversen, J. in Systematics of Today (ed. Hedberg, O.) 210–215 (Acta Universitatis Upsaliensis/Uppsala Universitets Årsskrift, 1958).

  • Colhoun, E. A. Application of Iversen’s glacial–interglacial cycle to interpretation of the late last glacial and Holocene vegetation history of western Tasmania. Quat. Sci. Rev. 15, 557–580 (1996).

    Article 

    Google Scholar 

  • Adeleye, M. A., Haberle, S. G., Ondei, S. & Bowman, D. M. J. S. Ecosystem transformation following the mid-nineteenth century cessation of Aboriginal fire management in Cape Pillar, Tasmania. Reg. Environ. Change 22, 99 (2022).

    Article 

    Google Scholar 

  • Mccann, K. The diversity–stability debate. Nature 405, 228–233 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hallett, L. M., Stein, C. & Suding, K. N. Functional diversity increases ecological stability in a grazed grassland. Oecologia 183, 831–840 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bello, Fde et al. Functional trait effects on ecosystem stability: assembling the jigsaw puzzle. Trends Ecol. Evol. 36, 822–836 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Lucini, F. A., Morone, F., Tomassone, M. S. & Makse, H. A. Diversity increases the stability of ecosystems. PLoS ONE 15, e0228692 (2020).

    Article 

    Google Scholar 

  • Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gallagher, R. V., Hughes, L. & Leishman, M. R. Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36, 531–540 (2013).

    Article 

    Google Scholar 

  • Song, Y., Wang, P., Li, G. & Zhou, D. Relationships between and ecosystem functioning: a review. Acta Ecol. Sin. 34, 85–91 (2014).

    Article 
    CAS 

    Google Scholar 

  • Li, W. et al. Plant can be independent of species diversity: observations based on the impact of 4-yrs of nitrogen and phosphorus additions in an alpine meadow. PLoS ONE 10, e0136040 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, C. J., Huang, Y., Siems, S. T. & Manton, M. J. Wintertime orographic precipitation over western Tasmania. J. South. Hemisphere Earth Syst. Sci. 68, 22–40 (2018).

    Article 

    Google Scholar 

  • Andrew, S. C. et al. Functional diversity of the Australian flora: strong links to species richness and climate. J. Veg. Sci. 32, e13018 (2021).

    Article 

    Google Scholar 

  • Biswas, S. R. & Mallik, A. U. Species diversity and relationship varies with disturbance intensity. Ecosphere 2, art52 (2011).

    Article 

    Google Scholar 

  • Gallagher, R. V. et al. A guide to using species trait data in conservation. One Earth 4, 927–936 (2021).

    Article 

    Google Scholar 

  • Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Harris, S. & Kitchener, A. From Forest to Fjaeldmark. Descriptions of Tasmania’s Vegetation (Department of Primary Industries, Water and Environment, Tasmania, 2005).

  • Adeleye, M. A., Haberle, S. G., McWethy, D., Connor, S. E. & Stevenson, J. Environmental change during the last glacial on an ancient land bridge of southeast Australia. J. Biogeogr. 48, 2946–2960 (2021).

    Article 

    Google Scholar 

  • Hopf, F. V. L., Colhoun, E. A. & Barton, C. E. Late-glacial and Holocene record of vegetation and climate from Cynthia Bay, Lake St Clair, Tasmania. J. Quat. Sci. 15, 725–732 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1099-1417(200010)15:73.0.CO;2-8″ data-track-action=”article reference” href=”https://doi.org/10.1002%2F1099-1417%28200010%2915%3A7%3C725%3A%3AAID-JQS563%3E3.0.CO%3B2-8″ aria-label=”Article reference 77″ data-doi=”10.1002/1099-1417(200010)15:73.0.CO;2-8″>Article 

    Google Scholar 

  • Stahle, L. N., Whitlock, C. & Haberle, S. G. A 17,000-year-long record of vegetation and fire from Cradle Mountain National Park, Tasmania. Front. Ecol. Evol 4, 82 (2016).

    Article 

    Google Scholar 

  • Michael-Shawn, F. et al. The influence of climatic change, fire and species invasion on a Tasmanian temperate rainforest system over the past 18,000 years. Quat. Sci. Rev. 260, 106824 (2021).

    Article 

    Google Scholar 

  • Climate and Water Availability in South-Eastern Australia: A Synthesis of Findings From Phase 2 of the South-Eastern Australian Climate initiative (SEACI) (CSIRO, 2012); https://doi.org/10.4225/08/584af3986fe96

  • Australian Climate Influences (Commonwealth of Australia, Bureau of Meteorology, 2010); http://www.bom.gov.au/watl/about-weather-and-climate/australian-climate-influences.shtml

  • Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C. & Hendon, H. H. On the remote drivers of rainfall variability in Australia. Mon. Weather Rev. 137, 3233–3253 (2009).

    Article 

    Google Scholar 

  • Mariani, M., Fletcher, M.-S., Holz, A. & Nyman, P. ENSO controls interannual fire activity in southeast Australia. Geophys. Res. Lett. 43, 10891–10900 (2016).

    Article 

    Google Scholar 

  • Mariani, M. & Fletcher, M.-S. The Southern Annular Mode determines interannual and centennial-scale fire activity in temperate southwest Tasmania, Australia. Geophys. Res. Lett. 43, 1702–1709 (2016).

    Article 

    Google Scholar 

  • Herbert, A. V. & Harrison, S. P. Evaluation of a modern-analogue methodology for reconstructing Australian palaeoclimate from pollen. Rev. Palaeobot. Palynol. 226, 65–77 (2016).

    Article 

    Google Scholar 

  • Blaauw, M. et al. rbacon: Age-depth modelling using Bayesian statistics. R package version 4.2.0 (2022).

  • Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778 (2020).

    Article 
    CAS 

    Google Scholar 

  • Falster, D. et al. AusTraits, a curated plant trait database for the Australian flora. Sci. Data 8, 254 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pérez-Harguindeguy, N. et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 64, 715–716 (2016).

    Article 

    Google Scholar 

  • Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).

    Article 

    Google Scholar 

  • Moles, A. T. & Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006).

    Article 

    Google Scholar 

  • Leishman, M. R. & Westoby, M. The role of seed size in seedling establishment in dry soil conditions—experimental evidence from semi-arid species. J. Ecol. 82, 249–258 (1994).

    Article 

    Google Scholar 

  • Falster, D. S. & Westoby, M. Plant height and evolutionary games. Trends Ecol. Evol. 18, 337–343 (2003).

    Article 

    Google Scholar 

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112–118 (2005).

    Article 

    Google Scholar 

  • Pakeman, R. J. Functional trait metrics are sensitive to the completeness of the species’ trait data? Methods Ecol. Evol. 5, 9–15 (2014).

    Article 

    Google Scholar 

  • Scheiner, S. M., Kosman, E., Presley, S. J. & Willig, M. R. Decomposing. Methods Ecol. Evol. 8, 809–820 (2017).

    Article 

    Google Scholar 

  • Ripley, B. et al. MASS: Support functions and datasets for venables and Ripley’s MASS. R package version ??? (2022).

  • Moy, C. M., Seltzer, G. O., Rodbell, D. T. & Anderson, D. M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162–165 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Changes in interactions over ecological time scales influence single-cell growth dynamics in a metabolically coupled marine microbial community

    Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs