in

Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces

  • Griggs, D. et al. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).

    Article 
    CAS 

    Google Scholar 

  • Charlop-Powers, Z. et al. Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. Proc. Natl Acad. Sci. USA 113, 14811 (2016).

    Article 
    CAS 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).

    Article 
    CAS 

    Google Scholar 

  • Martínez, J. L. Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367 (2008).

    Article 

    Google Scholar 

  • Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

    Article 
    CAS 

    Google Scholar 

  • Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evolution 5, 111–124 (2014).

    Article 

    Google Scholar 

  • Gamfeldt, L. & Roger, F. Revisiting the biodiversity–ecosystem multifunctionality relationship. Nat. Ecol. Evolution 1, 0168 (2017).

    Article 

    Google Scholar 

  • Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).

    Article 
    CAS 

    Google Scholar 

  • Zavaleta, E. S. et al. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443 (2010).

    Article 
    CAS 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wagg, C. et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266 (2014).

    Article 
    CAS 

    Google Scholar 

  • van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    Article 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    Article 

    Google Scholar 

  • Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B 281, 20141988 (2014).

    Article 

    Google Scholar 

  • Schittko, C. et al. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. J. Ecol. https://doi.org/10.1111/1365-2745.13852 (2022).

  • Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

    Article 
    CAS 

    Google Scholar 

  • Jing, X. et al. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate. Nat. Commun. 6, 1–8 (2015).

    Article 

    Google Scholar 

  • Kadowaki, K. et al. Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Commun. Biol. 1, 196 (2018).

    Article 

    Google Scholar 

  • Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).

    Article 
    CAS 

    Google Scholar 

  • Berman, J. J. in Taxonomic Guide to Infectious Diseases (ed. Berman, J. J.) 37–47 (Academic Press, 2012).

  • Berman, J. J. in Taxonomic Guide to Infectious Diseases (ed. Berman, J. J.) 25–31 (Academic Press, 2012).

  • Busse, H.-J. in Methods in Microbiology (eds Rainey, F. & Oren. A.) Vol. 38, 239–259 (Academic Press, 2011).

  • van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

    Article 

    Google Scholar 

  • van Bergeijk, D. A. et al. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat. Rev. Microbiol. 18, 546–558 (2020).

    Article 

    Google Scholar 

  • Orellana, L. H. et al. Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms. ISME J. 16, 630–641 (2022).

    Article 
    CAS 

    Google Scholar 

  • Fincker, M. et al. Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environ. Microbiol. 22, 3188–3204 (2020).

    Article 
    CAS 

    Google Scholar 

  • Stralis-Pavese, N. et al. Analysis of methanotroph community composition using a pmoA-based microbial diagnostic microarray. Nat. Protoc. 6, 609–624 (2011).

    Article 
    CAS 

    Google Scholar 

  • Berube, P. M. et al. Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J. 9, 1195–1207 (2015).

    Article 
    CAS 

    Google Scholar 

  • Liang, J.-L. et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hättenschwiler, S. & Gasser, P. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl Acad. Sci. USA 102, 1519 (2005).

    Article 

    Google Scholar 

  • Erktan, A. et al. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biol. Biochem. 148, 107876 (2020).

    Article 
    CAS 

    Google Scholar 

  • Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Article 

    Google Scholar 

  • Barberán, A. et al. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecol. Lett. 17, 794–802 (2014).

    Article 

    Google Scholar 

  • Chen, Q. L. et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141, 107686 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Z. et al. Rare species-driven diversity-ecosystem multifunctionality relationships are promoted by stochastic community assembly. mBio. mBio. 13, e00449–22 (2022).

    Article 

    Google Scholar 

  • Domínguez-García, V. et al. Unveiling dimensions of stability in complex ecological networks. Proc. Natl Acad. Sci. USA 116, 25714 (2019).

    Article 

    Google Scholar 

  • Zhang, L. et al. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J. 12, 2339–2351 (2018).

    Article 
    CAS 

    Google Scholar 

  • Couturier, M. et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat. Chem. Biol. 14, 306–310 (2018).

    Article 
    CAS 

    Google Scholar 

  • Steinberg, G. et al. A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nat. Commun. 11, 1608 (2020).

    Article 
    CAS 

    Google Scholar 

  • Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018).

    Article 

    Google Scholar 

  • Watson, C. J. et al. Ecological and economic benefits of low-intensity urban lawn management. J. Appl. Ecol. 57, 436–446 (2020).

    Article 

    Google Scholar 

  • Williams, N. S. G. et al. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 97, 4–9 (2009).

    Article 

    Google Scholar 

  • Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2 (figshare, 2019); https://doi.org/10.6084/m9.figshare.7504448.v3

  • Kettler, T. A. et al. Simplifed method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).

    Article 
    CAS 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. Biol. Sci. 281, 22 (2014).

    Google Scholar 

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front. Microbiol. 11, 1953 (2020).

    Article 

    Google Scholar 

  • Bastida, F. et al. Microbiological degradation index of soils in a semiarid climate. Soil Biol. Biochem. 38, 3463–3473 (2006).

    Article 
    CAS 

    Google Scholar 

  • Lugato, E. et al. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 295–300 (2021).

    Article 
    CAS 

    Google Scholar 

  • Delgado-Baquerizo, M. et al. The influence of soil age on ecosystem structure and function across biomes. Nat. Commun. 11, 4721 (2020).

    Article 
    CAS 

    Google Scholar 

  • Frostegård, Å. et al. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 43, 1621–1625 (2011).

    Article 

    Google Scholar 

  • Olsson, P. A. et al. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623–629 (1995).

    Article 
    CAS 

    Google Scholar 

  • Campbell, C. D. et al. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).

    Article 
    CAS 

    Google Scholar 

  • Bell, C. W. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 15, e50961 (2013).

    Google Scholar 

  • Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).

    Article 

    Google Scholar 

  • Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).

    Article 
    CAS 

    Google Scholar 

  • Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).

    Article 
    CAS 

    Google Scholar 

  • Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article 
    CAS 

    Google Scholar 

  • Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evolution 2, 427–436 (2018).

    Article 

    Google Scholar 

  • Legendre, P. & Legendre, L. Interpretation of Ecological Structures Numerical Ecology 3rd English edn (Elsevier Science BV, 2012).

  • Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).

  • Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417 (2014).

    Article 
    CAS 

    Google Scholar 

  • Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. figshare https://doi.org/10.6084/m9.figshare.21175492.v3 (2022).


  • Source: Ecology - nature.com

    Changes in interactions over ecological time scales influence single-cell growth dynamics in a metabolically coupled marine microbial community

    Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs