in

Acclimation of phenology relieves leaf longevity constraints in deciduous forests

  • Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).

    Article 

    Google Scholar 

  • Hopkins, A. D. The bioclimatic law. Mon. Weather Rev. 48, 355–355 (1920).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0493(1920)482.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0493%281920%2948%3C355a%3ATBL%3E2.0.CO%3B2″ aria-label=”Article reference 2″ data-doi=”10.1175/1520-0493(1920)482.0.CO;2″>Article 

    Google Scholar 

  • Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

    Article 

    Google Scholar 

  • Ge, Q., Wang, H., Rutishauser, T. & Dai, J. Phenological response to climate change in China: a meta-analysis. Glob. Change Biol. 21, 265–274 (2015).

    Article 

    Google Scholar 

  • Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).

    Article 

    Google Scholar 

  • Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).

    Article 

    Google Scholar 

  • Morisette, J. T. et al. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front. Ecol. Environ. 7, 253–260 (2009).

    Article 

    Google Scholar 

  • Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).

    Article 
    CAS 

    Google Scholar 

  • Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887–888 (2009).

    Article 

    Google Scholar 

  • Körner, C. & Basler, D. Plant science. Phenol. Glob. Warm. Sci. 327, 1461–1462 (2010).

    Google Scholar 

  • Delpierre, N. et al. Temperate and boreal forest tree phenology: from organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25 (2016).

    Article 

    Google Scholar 

  • Klosterman, S. T. et al. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 11, 4305–4320 (2014).

    Article 

    Google Scholar 

  • Hufkens, K. et al. Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sens. Environ. 117, 307–321 (2012).

    Article 

    Google Scholar 

  • Garrity, S. R. et al. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agric. For. Meteorol. 151, 1741–1752 (2011).

    Article 

    Google Scholar 

  • Fracheboud, Y. et al. The control of autumn senescence in European aspen. Plant Physiol. 149, 1982–1991 (2009).

    Article 
    CAS 

    Google Scholar 

  • Mariën, B. et al. Does drought advance the onset of autumn leaf senescence in temperate deciduous forest trees? Biogeosciences 18, 3309–3330 (2021).

    Article 

    Google Scholar 

  • Fu, Y. H. et al. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Glob. Change Biol. 24, 2159–2168 (2018).

    Article 

    Google Scholar 

  • Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).

    Article 

    Google Scholar 

  • Gordo, O. & Sanz, J. J. Long-term temporal changes of plant phenology in the Western Mediterranean. Glob. Change Biol. 15, 1930–1948 (2009).

    Article 

    Google Scholar 

  • Meier, M., Vitasse, Y., Bugmann, H. & Bigler, C. Phenological shifts induced by climate change amplify drought for broad-leaved trees at low elevations in Switzerland. Agric. For. Meteorol. 307, 108485 (2021).

  • Basler, D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric. For. Meteorol. 217, 10–21 (2016).

    Article 

    Google Scholar 

  • Keenan, T. F. et al. Terrestrial biosphere model performance for inter-annual variability of land–atmosphere CO2 exchange. Glob. Change Biol. 18, 1971–1987 (2012).

    Article 

    Google Scholar 

  • Liu, G., Chen, X., Fu, Y. & Delpierre, N. Modelling leaf coloration dates over temperate China by considering effects of leafy season climate. Ecol. Modell. 394, 34–43 (2019).

    Article 

    Google Scholar 

  • Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).

    Article 

    Google Scholar 

  • Wu, C., Hou, X., Peng, D., Gonsamo, A. & Xu, S. Land surface phenology of China’s temperate ecosystems over 1999–2013: spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity. Agric. For. Meteorol. 216, 177–187 (2016).

    Article 

    Google Scholar 

  • Fu, Y. S. H. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).

    Article 
    CAS 

    Google Scholar 

  • Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).

    Article 
    CAS 

    Google Scholar 

  • Paul, M. J. & Foyer, C. H. Sink regulation of photosynthesis. J. Exp. Bot. 52, 1383–1400 (2001).

    Article 
    CAS 

    Google Scholar 

  • Herold, A. Regulation of photosynthesis by sink activity—the missing link. New Phytol. 86, 131–144 (1980).

    Article 
    CAS 

    Google Scholar 

  • Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).

  • Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).

    Article 
    CAS 

    Google Scholar 

  • Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci.USA 112, 436–441 (2015).

    Article 
    CAS 

    Google Scholar 

  • Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO. New Phytol. 229, 2413–2445 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, Q. et al. Modeling leaf senescence of deciduous tree species in Europe. Glob. Change Biol. 26, 4104–4118 (2020).

    Article 

    Google Scholar 

  • Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006 (NASA, 2019).

  • Zhang, X. et al. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 84, 471–475 (2003).

    Article 

    Google Scholar 

  • Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).

    Article 

    Google Scholar 

  • Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    Article 

    Google Scholar 

  • Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    Article 

    Google Scholar 

  • Hänninen, H. & Tanino, K. Tree seasonality in a warming climate. Trends Plant Sci. 16, 412–416 (2011).

    Article 

    Google Scholar 

  • Kikuzawa, K. & Lechowicz, M. J. Ecology of Leaf Longevity (Springer, 2011).

  • Fu, Y. H. et al. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiol. 39, 1277–1284 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lim, P. O., Kim, H. J. & Nam, H. G. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).

    Article 
    CAS 

    Google Scholar 

  • Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, GB3018 (2007).

  • Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399 (2011).

    Article 

    Google Scholar 

  • Cong, N. et al. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Glob. Change Biol. 19, 881–891 (2013).

    Article 

    Google Scholar 

  • Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).

    Article 
    CAS 

    Google Scholar 

  • Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol. 22, 1456–1468 (2016).

    Article 

    Google Scholar 

  • Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Change Biol. 19, 45–63 (2013).

    Article 

    Google Scholar 

  • Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).

    Article 

    Google Scholar 

  • Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).

    Article 

    Google Scholar 

  • Chung, H. et al. Experimental warming studies on tree species and forest ecosystems: a literature review. J. Plant Res. 126, 447–460 (2013).

    Article 

    Google Scholar 

  • Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 83, 135–148 (2002).

    Article 

    Google Scholar 

  • Tuck, S. L. et al. MODISTools—downloading and processing MODIS remotely sensed data in R. Ecol. Evol. 4, 4658–4668 (2014).

    Article 

    Google Scholar 

  • Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Article 
    CAS 

    Google Scholar 

  • Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    Article 

    Google Scholar 

  • Stocker, B. rsofun: A modelling framework that implements the P-model for leaf-level acclimation of photosynthesis. R package version 4.3 https://github.com/computationales/rsofun (2020).

  • Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).

    Article 

    Google Scholar 

  • Meek, D. W., Hatfield, J. L., Howell, T. A., Idso, S. B. & Reginato, R. J. A generalized relationship between photosynthetically active radiation and solar radiation 1. Agron. J. 76, 939–945 (1984).

    Article 

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Stocker, B. ingestr: A tool to extract environmental point data from large global files or remote data servers. R package version 1.4 https://github.com/computationales/ingestr (2020).

  • Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).

    Article 
    CAS 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Myneni, R., Knyazikhin, Y. & Park, T. MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015).


  • Source: Ecology - nature.com

    Moving water and earth

    Study: Extreme heat is changing habits of daily life