Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).
Google Scholar
Díaz, S., et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).
Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411 (2020).
Google Scholar
Locke, H., et al. A Nature-Positive World: The Global Goal for Nature (Wildlife Conservation Society, 2020); https://library.wcs.org/doi/ctl/view/mid/33065/pubid/DMX3974900000.aspx
Open-ended Working Group on the Post-2020 Global Biodiversity Framework. First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (Convention on Biological Diversity, 2021).
Open-Ended Working Group on the Post-2020 Global Biodiversity Framework. Draft Recommendation Submitted by the Co-Chairs CBD/WG2020/4/L.2-ANNEX (Convention on Biological Diversity, 2022).
Environment Act 2021 (UK) (HM Government, 2021); https://www.legislation.gov.uk/ukpga/2021/30/contents/enacted
Bull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 1, 790–798 (2018).
Google Scholar
Prendeville, S., Cherim, E. & Bocken, N. Circular cities: mapping six cities in transition. Environ. Innov. Soc. Transit. 26, 171–194 (2018).
de Silva, G. C., Regan, E. C., Pollard, E. H. B. & Addison, P. F. E. The evolution of corporate no net loss and net positive impact biodiversity commitments: understanding appetite and addressing challenges. Bus. Strategy Environ. 28, 1481–1495 (2019).
Google Scholar
zu Ermgassen, S. O. S. E. et al. Exploring the ecological outcomes of mandatory biodiversity net gain using evidence from early‐adopter jurisdictions in England. Conserv. Lett. 14, e12820 (2021).
Google Scholar
McGlyn, J., et al. Science-Based Targets for Nature: Initial Guidance for Business (Science Based Targets Network, 2020); https://sciencebasedtargetsnetwork.org/resource-repository/
zu Ermgassen, S. O. S. E. et al. Are corporate biodiversity commitments consistent with delivering ‘nature-positive’ outcomes? A review of ‘nature-positive’ definitions, company progress and challenges. J. Clean. Prod. 379, 134798 (2022).
Google Scholar
Addison, P. F. E., Bull, J. W. & Milner‐Gulland, E. J. Using conservation science to advance corporate biodiversity accountability. Conserv. Biol. 33, 307–318 (2019).
Google Scholar
Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).
Google Scholar
Maron, M. et al. Setting robust biodiversity goals. Conserv. Lett. https://doi.org/10.1111/conl.12816 (2021).
Newing, H. & Perram, A. What do you know about conservation and human rights? Oryx 53, 595–596 (2019).
Google Scholar
Standard on Biodiversity Offsets (The Business and Biodiversity Offsets Programme, 2012).
Arlidge, W. N. S., et al. A mitigation hierarchy approach for managing sea turtle captures in small-scale fisheries. Front. Mar. Sci. 7, 49 (2020).
Squires, D. & Garcia, S. The least-cost biodiversity impact mitigation hierarchy with a focus on marine fisheries and bycatch issues. Conserv. Biol. 32, 989–997 (2018).
Google Scholar
Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish. 21, 269–289 (2020).
Google Scholar
Gupta, T. et al. Mitigation of elasmobranch bycatch in trawlers: a case study in Indian fisheries. Front. Mari. Sci. 7, 571 (2020).
Budiharta, S. et al. Restoration to offset the impacts of developments at a landscape scale reveals opportunities, challenges and tough choices. Global Environ. Change 52, 152–161 (2018).
Google Scholar
Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).
Google Scholar
Arlidge, W. N. S. et al. A global mitigation hierarchy for nature conservation. BioScience 68, 336–347 (2018).
Google Scholar
Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2021).
Google Scholar
Wolff, A., Gondran, N. & Brodhag, C. Detecting unsustainable pressures exerted on biodiversity by a company. Application to the food portfolio of a retailer. J. Clean. Prod. 166, 784–797 (2017).
Google Scholar
FAOSTAT Analytical Brief 15 Land Use and Land Cover Statistics: Global, Regional and Country Trends, 1990–2018 (FAO, 2020).
Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).
Google Scholar
Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).
Google Scholar
Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).
Google Scholar
Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357 (2019).
Google Scholar
Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).
Google Scholar
Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987 (2018).
Google Scholar
Wiedmann, T., Lenzen, M., Keyßer, L. T. & Steinberger, J. K. Scientists’ warning on affluence. Nat. Commun. 11, 3107 (2020).
Google Scholar
Benton, T. G. et al. A ‘net zero’ equivalent target is needed to transform food systems. Nat. Food 2, 905–906 (2021). 2021.
Google Scholar
Crenna, E., Sinkko, T. & Sala, S. Biodiversity impacts due to food consumption in Europe. J. Clean. Prod. 227, 378–391 (2019).
Google Scholar
Bull, J. W., et al. Analysis: the biodiversity footprint of the University of Oxford. Nature 604, 420–424 (2022).
Harrington, R. A., Adhikari, V., Rayner, M. & Scarborough, P. Nutrient composition databases in the age of big data: foodDB, a comprehensive, real-time database infrastructure. BMJ Open 9, e026652 (2019).
Google Scholar
Chaudhary, A., Verones, F., De Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species–area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).
Google Scholar
Winter, L., Lehmann, A., Finogenova, N. & Finkbeiner, M. Including biodiversity in life cycle assessment—state of the art, gaps and research needs. Environ. Impact Assess. Rev. 67, 88–100 (2017).
Google Scholar
Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Global Environ. Change 38, 195–204 (2016).
Google Scholar
Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).
Google Scholar
Bates, B., et al. National Diet and Nutrition Survey Years 1 to 9 of the Rolling Programme (2008/2009–2016/2017): Time Trend and Income Analyses (Public Health England & Food Standards Agency, 2019).
Stewart, C., Piernas, C., Cook, B. & Jebb, S. A. Trends in UK meat consumption: analysis of data from years 1–11 (2008–09 to 2018–19) of the National Diet and Nutrition Survey rolling programme. Lancet Planet. Health 5, e699–e708 (2021).
Google Scholar
Nielsen, K. S. et al. Improving climate change mitigation analysis: a framework for examining feasibility. One Earth 3, 325–336 (2020).
Google Scholar
Selinske, M. J. et al. We have a steak in it: eliciting interventions to reduce beef consumption and its impact on biodiversity. Conserv. Lett. 13, e12721 (2020).
Google Scholar
Hollands, G. J. et al. The TIPPME intervention typology for changing environments to change behaviour. Nat. Hum. Behav. 1, 1–9 (2017).
Google Scholar
Marteau, T. M., Hollands, G. J. & Fletcher, P. C. Changing human behavior to prevent disease: the importance of targeting automatic processes. Science 337, 1492–1495 (2012).
Google Scholar
Michie, S., van Stralen, M. M. & West, R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement. Sci. 6, 42 (2011).
Google Scholar
Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect earth observation to economic decisions. One Earth 3, 5–8 (2020).
Google Scholar
Godar, J., Suavet, C., Gardner, T. A., Dawkins, E. & Meyfroidt, P. Balancing detail and scale in assessing transparency to improve the governance of agricultural commodity supply chains. Environ. Res. Lett. 11, 035015 (2016).
Google Scholar
DeFries, R. S., Fanzo, J., Mondal, P., Remans, R. & Wood, S. A. Is voluntary certification of tropical agricultural commodities achieving sustainability goals for small-scale producers? A review of the evidence. Environ. Res. Lett. 12, 033001 (2017).
Google Scholar
Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. Biodiversity offsets in theory and practice. Oryx 47, 369–380 (2013).
Google Scholar
zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under “no net loss” policies: a global review. Conserv. Lett. 12, e12664 (2019).
Google Scholar
Waddock, S. Achieving sustainability requires systemic business transformation. Glob. Sustain. 3, e12 (2020).
Travers, H., Walsh, J., Vogt, S., Clements, T. & Milner-Gulland, E. J. Delivering behavioural change at scale: what conservation can learn from other fields. Biol. Conserv. 257, 109092 (2021).
Google Scholar
Gaupp, F. et al. Food system development pathways for healthy, nature-positive and inclusive food systems. Nat. Food 2, 928–934 (2021).
Google Scholar
Astill, J. et al. Transparency in food supply chains: a review of enabling technology solutions. Trends Food Sci. Technol. 91, 240–247 (2019).
Google Scholar
Poore, J & Nemecek, T. Full Excel model: life-cycle environmental impacts of food drink products. Oxford University Research Archive https://ora.ox.ac.uk/objects/uuid:a63fb28c-98f8-4313-add6-e9eca99320a5 (2018).
Clark, M., et al. Estimating the environmental impacts of 57,000 food products. Proc. Natl Acad. Sci. USA 119, e2120584119 (2022).
Clark, M., et al. Supplemental Data for ‘Estimating the environmental impacts of 57,000 food products’. Oxford University Research Archive https://ora.ox.ac.uk/objects/uuid:4ad0b594-3e81-4e61-aefc-5d869c799a87 (2022).
Bianchi, F., Dorsel, C., Garnett, E., Aveyard, P. & Jebb, S. A. Interventions targeting conscious determinants of human behaviour to reduce the demand for meat: a systematic review with qualitative comparative analysis. IJBNPA 15, 102 (2018).
Bianchi, F., Garnett, E., Dorsel, C., Aveyard, P. & Jebb, S. A. Restructuring physical micro-environments to reduce the demand for meat: a systematic review and qualitative comparative analysis. Lancet Planet. Health 2, e384–e397 (2018).
Google Scholar
Hillier-Brown, F. C. et al. The impact of interventions to promote healthier ready-to-eat meals (to eat in, to take away or to be delivered) sold by specific food outlets open to the general public: a systematic review. Obes. Rev. 18, 227–246 (2017).
Google Scholar
von Philipsborn, P. et al. Environmental interventions to reduce the consumption of sugar-sweetened beverages and their effects on health. Cochrane Database Syst. Rev. 6, Cd012292 (2019).
Attwood, S., Voorheis, P., Mercer, C., Davies, K. & Vennard, D. Playbook for Guiding Diners toward Plant-Rich Dishes in Food Service (World Resources Institute, 2020); https://www.wri.org/research/playbook-guiding-diners-toward-plant-rich-dishes-food-service
Garnett, E. E., Balmford, A., Sandbrook, C., Pilling, M. A. & Marteau, T. M. Impact of increasing vegetarian availability on meal selection and sales in cafeterias. Proc. Natl Acad. Sci. USA 116, 20923 (2019).
Google Scholar
Reinders, M. J., Huitink, M., Dijkstra, S. C., Maaskant, A. J. & Heijnen, J. Menu-engineering in restaurants—adapting portion sizes on plates to enhance vegetable consumption: a real-life experiment. IJBNPA 14, 41 (2017).
Brunner, F., Kurz, V., Bryngelsson, D. & Hedenus, F. Carbon label at a university restaurant—label implementation and evaluation. Ecol. Econ. 146, 658–667 (2018).
Google Scholar
McClain, A. D., Hekler, E. B. & Gardner, C. D. Incorporating prototyping and iteration into intervention development: a case study of a dining hall-based intervention. J. Am. Coll. Health 61, 122–131 (2013).
Google Scholar
de Vaan, J. Eating Less Meat: How to Stimulate the Choice for a Vegetarian Option without Inducing Reactance. MSc thesis, Radboud Univ. (2018).
Source: Ecology - nature.com