in

Eco-evolutionary modelling of microbial syntrophy indicates the robustness of cross-feeding over cross-facilitation

  • Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).

    Article 
    CAS 

    Google Scholar 

  • Palmer, J. D. & Foster, K. R. Bacterial species rarely work together. Science 376, 581–582 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pande, S. & Kost, C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 25, 349–361 (2017).

    Article 
    CAS 

    Google Scholar 

  • Nadell, C. D., Xavier, J. B. & Foster, K. R. The sociobiology of biofilms. FEMS Microbiol. Rev. 33, 206–224 (2009).

    Article 
    CAS 

    Google Scholar 

  • Fritts, R. K., McCully, A. L. & McKinlay, J. B. Extracellular metabolism sets the table for microbial cross-feeding. Microbiol. Mol. Biol. Rev. 85, 135 (2021).

    Article 

    Google Scholar 

  • D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).

    Article 

    Google Scholar 

  • Libby, E., Hébert-Dufresne, L., Hosseini, S.-R. & Wagner, A. Syntrophy emerges spontaneously in complex metabolic systems. PLoS Comput. Biol. 15, e1007169 (2019).

    Article 

    Google Scholar 

  • Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).

    Article 
    CAS 

    Google Scholar 

  • Zachar, I. Closing the energetics gap. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01839-3 (2022).

    Article 

    Google Scholar 

  • Zachar, I. & Boza, G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell. Mol. Life Sci. 77, 3503–3523. https://doi.org/10.1007/s00018-020-03462-6 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zachar, I. & Szathmáry, E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses. Biol. Direct 12, 19. https://doi.org/10.1186/s13062-017-0190-5 (2017).

    Article 
    CAS 

    Google Scholar 

  • Booth, A. & Doolittle, W. F. Eukaryogenesis, how special really?. Proc. Natl. Acad. Sci. 112, 10278–10285 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: Interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).

    Article 
    CAS 

    Google Scholar 

  • Szathmáry, E. On the propagation of a conceptual error concerning hypercycles and cooperation. J. Syst. Chem. 4, 2208 (2013).

    Article 

    Google Scholar 

  • Seth, E. C. & Taga, M. E. Nutrient cross-feeding in the microbial world. Front. Microbiol. 5, 350 (2014).

    Article 

    Google Scholar 

  • Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl. Acad. Sci. 116, 15979–15984 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yurtsev, E. A., Conwill, A. & Gore, J. Oscillatory dynamics in a bacterial cross-protection mutualism. Proc. Natl. Acad. Sci. 113, 6236–6241 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, 45 (2021).

    Article 

    Google Scholar 

  • Momeni, B., Xie, L. & Shou, W. Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial interactions. Elife 6, 25051 (2017).

    Article 

    Google Scholar 

  • Zengler, K. & Zaramela, L. S. The social network of microorganisms: How auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).

    Article 
    CAS 

    Google Scholar 

  • Koschwanez, J. H., Foster, K. R. & Murray, A. W. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 9, e1001122 (2011).

    Article 
    CAS 

    Google Scholar 

  • Ciofu, O., Beveridge, T. J., Kadurugamuwa, J., Walther-Rasmussen, J. & Høiby, N. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45, 9–13 (2000).

    Article 
    CAS 

    Google Scholar 

  • Xenophontos, C., Harpole, W. S., Küsel, K. & Clark, A. T. Cheating promotes coexistence in a two-species one-substrate culture model. Front. Ecol. Evol. 9, 78006 (2022).

    Article 

    Google Scholar 

  • West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).

    Article 

    Google Scholar 

  • Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article 
    CAS 

    Google Scholar 

  • Kümmerli, R. & Brown, S. P. Molecular and regulatory properties of a public good shape the evolution of cooperation. Proc. Natl. Acad. Sci. 107, 18921–18926 (2010).

    Article 
    ADS 

    Google Scholar 

  • Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2019).

    Article 

    Google Scholar 

  • van der Meij, A., Worsley, S. F., Hutchings, M. I. & van Wezel, G. P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41, 392–416 (2017).

    Article 

    Google Scholar 

  • Kümmerli, R., Schiessl, K. T., Waldvogel, T., McNeill, K. & Ackermann, M. Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol. Lett. 17, 1536–1544 (2014).

    Article 

    Google Scholar 

  • Jautzus, T., van Gestel, J. & Kovács, Á. T. Complex extracellular biology drives surface competition in lessigreaterBacillus subtilisless/igreater. Ecol. Lett. 16, 2320–2328. https://doi.org/10.1101/2022.02.28.482363 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).

    Article 

    Google Scholar 

  • Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. 107, 2124–2129 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    Article 

    Google Scholar 

  • Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sorg, R. A. et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLoS Biol. 14, e2000631 (2016).

    Article 

    Google Scholar 

  • Karray, F. et al. Extracellular hydrolytic enzymes produced by halophilic bacteria and archaea isolated from hypersaline lake. Mol. Biol. Rep. 45, 1297–1309 (2018).

    Article 
    CAS 

    Google Scholar 

  • Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tarnita, C. E. The ecology and evolution of social behavior in microbes. J. Exp. Biol. 220, 18–24 (2017).

    Article 

    Google Scholar 

  • Özkaya, Ö., Xavier, K. B., Dionisio, F. & Balbontn, R. Maintenance of microbial cooperation mediated by public goods in single- and multiple-trait scenarios. J. Bacteriol. 199, 22 (2017).

    Article 

    Google Scholar 

  • Yang, D.-D. et al. Fitness and productivity increase with ecotypic diversity among Escherichia coli strains that coevolved in a simple, constant environment. Appl. Environ. Microbiol. 86, 8 (2020).

    Article 

    Google Scholar 

  • Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2013).

    Article 

    Google Scholar 

  • Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).

    Article 
    CAS 

    Google Scholar 

  • Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl. Acad. Sci. 115, 12000–12004 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Summers, Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Maddamsetti, R., Lenski, R. E. & Barrick, J. E. Adaptation, clonal interference, and frequency-dependent interactions in a long-term evolution experiment with Escherichia coli. Genetics 200, 619–631 (2015).

    Article 
    CAS 

    Google Scholar 

  • Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102, 127–144 (1998).

    Article 

    Google Scholar 

  • Popat, R. et al. Quorum-sensing and cheating in bacterial biofilms. Proc. R. Soc. B 279, 4765–4771 (2012).

    Article 
    CAS 

    Google Scholar 

  • Rainey, P. B. & Rainey, K. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425, 72–74 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hardin, G. Tragedy of the commons. Science 162, 1243 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • West, S. A., Cooper, G. A., Ghoul, M. B. & Ten Griffin, A. S. recent insights for our understanding of cooperation. Nat. Ecol. Evol. 5, 419–430 (2021).

    Article 

    Google Scholar 

  • MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).

    Article 
    CAS 

    Google Scholar 

  • Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to cooperation in microbial communities. Proc. Natl. Acad. Sci. 111, 17941–17946 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tilman, D. Resource Competition and Community Structure. Monographs in Population Biology, Vol. 17 (Princeton University Press, 1982).

    Google Scholar 

  • Ferenci, T. Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol. 24, 209–223 (2016).

    Article 
    CAS 

    Google Scholar 

  • Rozen, D. E., Philippe, N., de Visser, J. A., Lenski, R. E. & Schneider, D. Death and cannibalism in a seasonal environment facilitate bacterial coexistence. Ecol. Lett. 12, 34–44 (2009).

    Article 

    Google Scholar 

  • Brännström, Å., Johansson, J. & von Festenberg, N. The Hitchhiker’s Guide to Adaptive Dynamics. Games 4, 304–328 (2013).

    Article 
    MATH 

    Google Scholar 

  • Ramin, K. I. & Allison, S. D. Bacterial tradeoffs in growth rate and extracellular enzymes. Front. Microbiol. 10, 2956 (2019).

    Article 

    Google Scholar 

  • Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).

    Article 

    Google Scholar 

  • Libby, E., Kempes, C. & Okie, J. Metabolic compatibility and the rarity of prokaryote endosymbioses. BioRxiv https://doi.org/10.1101/2022.04.14.488272 (2022).

    Article 

    Google Scholar 

  • Pauli, B., Oña, L., Hermann, M. & Kost, C. Obligate mutualistic cooperation limits evolvability. Nat. Commun. 13, 27630 (2022).

    Article 

    Google Scholar 

  • Oña, L. & Kost, C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol. Lett. 25, 1410–1420 (2022).

    Article 

    Google Scholar 

  • Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).

    Article 

    Google Scholar 

  • Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. 111, E2149–E2156 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McCutcheon, J. P. The genomics and cell biology of host-beneficial intracellular infections. Annu. Rev. Cell Dev. Biol. 37, 115–142 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 5 (2016).

    Article 

    Google Scholar 

  • Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).

    Article 
    CAS 

    Google Scholar 

  • Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • López-García, P. & Moreira, D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).

    Article 

    Google Scholar 

  • Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022).

    Article 

    Google Scholar 

  • Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zachar, I., Szilágyi, A., Számadó, S. & Szathmáry, E. Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection. Proc. Natl. Acad. Sci. USA. 115, E1504–E1510. https://doi.org/10.1073/pnas.1718707115 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cavalier-Smith, T. & Chao, E.E.-Y. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma https://doi.org/10.1007/s00709-019-01442-7 (2020).

    Article 

    Google Scholar 

  • Searcy, D. G. Nutritional syntrophies and consortia as models for the origin of mitochondria. Symb. Mech. Model Syst. 1, 163–183. https://doi.org/10.1007/0-306-48173-1_10 (2002).

    Article 

    Google Scholar 

  • Müller, N., Timmers, P., Plugge, C. M., Stams, A. J. M. & Schink, B. Syntrophy in methanogenic degradation. Endosymb. Methanog. Archaea 1, 153–192. https://doi.org/10.1007/978-3-319-98836-8_9 (2018).

    Article 

    Google Scholar 

  • Searcy, D. G. Metabolic integration during the evolutionary origin of mitochondria. Cell Res. 13, 229–238 (2003).

    Article 
    CAS 

    Google Scholar 

  • Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).

    Article 
    CAS 

    Google Scholar 

  • Spang, A. et al. Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet. 14, e1007080 (2018).

    Article 

    Google Scholar 

  • Burns, J. A., Pittis, A. A. & Kim, E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2, 697–704 (2018).

    Article 

    Google Scholar 

  • Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jimenez, P. & Scheuring, I. Density-dependent private benefit leads to bacterial mutualism. Evolution 75, 1619–1635. https://doi.org/10.1111/evo.14241 (2021).

    Article 

    Google Scholar 

  • Preussger, D., Giri, S., Muhsal, L. K., Oña, L. & Kost, C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr. Biol. 30, 3580-3590.e7 (2020).

    Article 
    CAS 

    Google Scholar 

  • Monaco, H. et al. Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating. Nat. Commun. 13, 3580 (2022).

    Article 
    ADS 

    Google Scholar 

  • Yanni, D., Márquez-Zacarias, P., Yunker, P. J. & Ratcliff, W. C. Drivers of spatial structure in social microbial communities. Curr. Biol. 29, 545–550 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Modelling the impact of non-pharmaceutical interventions on the spread of COVID-19 in Saudi Arabia

    Water masses shape pico-nano eukaryotic communities of the Weddell Sea