Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).
Google Scholar
Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-Arctic seas. Front. Mar. Sci. 7, 983–992 (2020).
Google Scholar
Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Change. 10, 983–992 (2020).
Google Scholar
Macias-Fauria, M. & Post, E. Effects of sea ice on Arctic biota: An emerging crisis discipline. Biol. Lett. 14, 20170702 (2018).
Google Scholar
Kohlbach, D. et al. The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: Food web relationships revealed by lipid and stable isotope analyses. Limnol. Oceanogr. 61, 2027–2044 (2016).
Google Scholar
Søreide, J. E. et al. Sympagic-pelagic-benthic coupling in Arctic and Atlantic waters around Svalbard revealed by stable isotopic and fatty acid tracers. Mar. Biol. Res. 9, 831–850 (2013).
Google Scholar
Slagstad, D., Wassmann, P. F. J. & Ellingsen, I. Physical constrains and productivity in the future Arctic Ocean. Front. Mar. Sci. 2015, 2 (2015).
FISCAO. Final Report of the Fifth Meeting of Scientific Experts on Fish Stocks in the Central Arctic Ocean. https://apps-afsc.fisheries.noaa.gov/documents/Arctic_fish_stocks_fifth_meeting/508_Documents/508_Final_report_of_the_505th_FiSCAO_meeting.pdf (2018).
David, C. et al. Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biol. 39, 981–994 (2016).
Google Scholar
Gradinger, R. Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Mar. Biol. 133, 745–754 (1999).
Google Scholar
Kosobokova, K. N., Hopcroft, R. R. & Hirche, H.-J. Patterns of zooplankton diversity through the depths of the Arctic’s central basins. Mar Biodivers. 41, 29–50 (2011).
Google Scholar
Mumm, N. et al. Breaking the ice: Large-scale distribution of mesozooplankton after a decade of Arctic and transpolar cruises. Polar Biol. 20, 189–197 (1998).
Google Scholar
Snoeijs-Leijonmalm, P. et al. Unexpected fish and squid in the central Arctic deep scattering layer. Sci. Adv. 8, 7536 (2022).
Google Scholar
David, C., Lange, B., Rabe, B. & Flores, H. Community structure of under-ice fauna in the Eurasian central Arctic Ocean in relation to environmental properties of sea-ice habitats. Mar. Ecol. Prog. Ser. 522, 15–32 (2015).
Google Scholar
Gosselin, M., Levasseur, M., Wheeler, P. A., Horner, R. A. & Booth, B. C. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res. Part II(44), 1623–1644 (1997).
Google Scholar
Ardyna, M. & Arrigo, K. R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change. 10, 892–903 (2020).
Google Scholar
Hays, G. C. In Migrations and Dispersal of Marine Organisms. (eds Jones, M. B. et al.) 163–170 (Springer).
Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).
Google Scholar
Geoffroy, M. et al. Mesopelagic sound scattering layers of the high arctic: Seasonal variations in biomass, species assemblage, and trophic relationships. Front. Mar. Sci. 2019, 6 (2019).
Gjøsæter, H., Wiebe, P. H., Knutsen, T. & Ingvaldsen, R. B. Evidence of Diel vertical migration of mesopelagic sound-scattering organisms in the Arctic. Front. Mar. Sci. 2017, 4 (2017).
Knutsen, T., Wiebe, P. H., Gjøsæter, H., Ingvaldsen, R. B. & Lien, G. High latitude epipelagic and mesopelagic scattering layers—a reference for future arctic ecosystem change. Front. Mar. Sci. 2017, 4 (2017).
Priou, P. et al. Dense mesopelagic sound scattering layer and vertical segregation of pelagic organisms at the Arctic-Atlantic gateway during the midnight sun. Prog. Oceanogr. 196, 102611 (2021).
Google Scholar
Snoeijs-Leijonmalm, P. et al. A deep scattering layer under the North Pole pack ice. Prog. Oceanogr. 194, 102560 (2021).
Google Scholar
St-John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: Perspectives from the mesopelagic community. Front. Mar. Sci. 2016, 3 (2016).
Fransson, A. et al. Joint cruise 2-2 2021: Cruise report. The Nansen Legacy Report Series, 30/2022. https://doi.org/10.7557/nlrs.6413 (2022).
Rudels, B. et al. Observations of water masses and circulation with focus on the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s. Ocean Sci. 9, 147–169 (2013).
Google Scholar
Krumpen, T. et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci. Rep. 9, 5459 (2019).
Google Scholar
Aagaard, K. A synthesis of the Arctic Ocean circulation. Rapp. P.-V. Rcun. Cons. int. Explor. Mer. 188, 11–22 (1989).
Perez-Hernandez, M. D. et al. The Atlantic Water boundary current north of Svalbard in late summer. J. Geophys. Res. 122, 2269–2290 (2017).
Google Scholar
Våge, K. et al. The Atlantic Water boundary current in the Nansen Basin: Transport and mechanisms of lateral exchange. J. Geophys. Res. 121, 6946–6960 (2016).
Google Scholar
Crews, L., Sundfjord, A., Albretsen, J. & Hattermann, T. Mesoscale Eddy Activity and Transport in the Atlantic Water Inflow Region North of Svalbard. J. Geophys. Res. 123, 201–215 (2018).
Google Scholar
Kolås, E. H., Koenig, Z., Fer, I., Nilsen, F. & Marnela, M. Structure and Transport of Atlantic Water North of Svalbard From Observations in Summer and Fall 2018. J. Geophys. Res. 125, 6174 (2020).
Google Scholar
Basedow, S. L. et al. Seasonal variation in transport of zooplankton into the arctic basin through the atlantic gateway. Fram Strait. Front. Mar. Sci. 2018, 5 (2018).
Vernet, M., Carstensen, J., Reigstad, M. & Svensen, C. Editorial: Carbon bridge to the Arctic. Front. Mar. Sci. 2020, 7 (2020).
Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: Trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).
Google Scholar
Wassmann, P., Slagstad, D. & Ellingsen, I. Advection of mesozooplankton into the northern svalbard shelf region. Front. Mar. Sci. 2019, 6 (2019).
Auel, H. Egg size and reproductive adaptations among Arctic deep-sea copepods (Calanoida, Paraeuchaeta). Helgol. Mar. Res. 58, 147–153 (2004).
Google Scholar
Gluchowska, M. et al. Zooplankton in Svalbard fjords on the Atlantic-Arctic boundary. Polar Biol. 39, 1785–1802 (2016).
Google Scholar
Wang, Y.-G., Tseng, L.-C., Lin, M. & Hwang, J.-S. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin. Arctic Ocean. Plos One. 14, e0219319 (2019).
Google Scholar
Gislason, A. & Silva, T. Abundance, composition, and development of zooplankton in the Subarctic Iceland Sea in 2006, 2007, and 2008. ICES J. Mar. Sci. 69, 1263–1276 (2012).
Google Scholar
Zhukova, N. G., Nesterova, V. N., Prokopchuk, I. P. & Rudneva, G. B. Winter distribution of euphausiids (Euphausiacea) in the Barents Sea (2000–2005). Deep-Sea Res. Part II(56), 1959–1967 (2009).
Google Scholar
Dalpadado, P. & Skjoldal, H. R. Abundance, maturity and growth of the krill species Thysanoessa inermis and T. longicaudata in the Barents Sea. Mar. Ecol. Prog. Ser. 144, 175–183 (1996).
Google Scholar
Koszteyn, J., Timofeev, S., Węsławski, J. M. & Malinga, B. Size structure of Themisto abyssorum Boeck and Themisto libellula (Mandt) populations in European Arctic seas. Polar Biol. 15, 85–92 (1995).
Google Scholar
Dalpadado, P., Borkner, N., Bogstad, B. & Mehl, S. Distribution of Themisto (Amphipoda) spp. in the Barents Sea and predator-prey interactions. ICES J. Mar. Sci. 58, 876–895 (2001).
Google Scholar
Macnaughton, M. O., Thormar, J. & Berge, J. Sympagic amphipods in the Arctic pack ice: Redescriptions of Eusirus holmii Hansen, 1887 and Pleusymtes karstensi (Barnard, 1959). Polar Biol. 30, 1013–1025 (2007).
Google Scholar
Kraft, A., Graeve, M., Janssen, D., Greenacre, M. & Falk-Petersen, S. Arctic pelagic amphipods: Lipid dynamics and life strategy. J. Plankton Res. 37, 790–807 (2015).
Google Scholar
Kreibich, T., Hagen, W. & Saborowski, R. Food utilization of two pelagic crustaceans in the Greenland Sea: Meganyctiphanes norvegica (Euphausiacea) and Hymenodora glacialis (Decapoda, Caridea). Mar. Ecol. Prog. Ser. 413, 105–115 (2010).
Google Scholar
Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619 (2018).
Google Scholar
Grigor, J. J., Søreide, J. E. & Varpe, Ø. Seasonal ecology and life-history strategy of the high-latitude predatory zooplankter Parasagitta elegans. Mar. Ecol. Prog. Ser. 499, 77–88 (2014).
Google Scholar
Maclennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).
Google Scholar
Gjøsæter, H. & Ushakov, N. G. Acoustic estimates of the Barents Sea Arctic cod Stock (Boreogadus saida). Forage Fishes in Marine Ecosystems. Alaska Sea Grant Collage Program, University of Alaska Fairbanks 97:01, 485–504 (1997).
Raskoff, K. A., Hopcroft, R. R., Kosobokova, K. N., Purcell, J. E. & Youngbluth, M. Jellies under ice: ROV observations from the Arctic 2005 hidden ocean expedition. Deep-Sea Res. Part II(57), 111–126 (2010).
Google Scholar
Bluhm, B. A. et al. The Pan-Arctic continental slope: Sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. 2020, 7 (2020).
Hop, H. et al. Pelagic ecosystem characteristics across the atlantic water boundary current from Rijpfjorden, Svalbard, to the Arctic Ocean During Summer (2010–2014). Front. Mar. Sci. 2019, 6 (2019).
Mumm, N. Composition and distribution of mesozooplankton in the Nansen Basin, Arctic Ocean, during summer. Polar Biol. 13, 451–461 (1993).
Google Scholar
Ona, E. & Nielsen, J. Acoustic detection of the Greenland shark (Somniosus microcephalus) using multifrequency split beam echosounder in Svalbard waters. Prog. Oceanogr. 206, 102842 (2022).
Google Scholar
Gjøsæter, H., Ingvaldsen, R. & Christiansen, J. S. Acoustic scattering layers reveal a faunal connection across the Fram Strait. Prog. Oceanogr. 185, 102348 (2020).
Google Scholar
Ingvaldsen, R. B., Gjosaeter, H., Ona, E. & Michalsen, K. Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biol. 40, 2105–2111 (2017).
Google Scholar
Chawarski, J., Klevjer, T. A., Coté, D. & Geoffroy, M. Evidence of temperature control on mesopelagic fish and zooplankton communities at high latitudes. Front. Mar. Sci. 2022, 9 (2022).
Chernova, N. V. Catching of Greenland halibut Reinhardtius hippoglossoides (Pleuronectidae) on the shelf edge of the Laptev and East Siberian Seas. J. Ichthyol. 57, 219–227 (2017).
Google Scholar
Benzik, A. N., Budanova, L. K. & Orlov, A. M. Hard life in cold waters: Size distribution and gonads show that Greenland halibut temporarily inhabit the Siberian Arctic. Water Biol. Secur. 1, 100037 (2022).
Google Scholar
Olsen, L. M. et al. A red tide in the pack ice of the Arctic Ocean. Sci. Rep. 9, 9536 (2019).
Google Scholar
Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).
Google Scholar
Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).
Google Scholar
Drivdal, M. et al. Connections to the deep: Deep vertical migrations, an important part of the life cycle of Apherusa glacialis, an arctic ice-associated amphipod. Front. Mar. Sci. 2021, 8 (2021).
Scoulding, B., Chu, D., Ona, E. & Fernandes, P. G. Target strengths of two abundant mesopelagic fish species. J. Acoust. Soc. Am. 137, 989–1000 (2015).
Google Scholar
Popova, E. E., Yool, A., Aksenov, Y. & Coward, A. C. Role of advection in Arctic Ocean lower trophic dynamics: A modeling perspective. J. Geophys. Res. 118, 1571–1586 (2013).
Google Scholar
Saunders, R. A., Ingvarsdóttir, A., Rasmussen, J., Hay, S. J. & Brierley, A. S. Regional variation in distribution pattern, population structure and growth rates of Meganyctiphanes norvegica and Thysanoessa longicaudata in the Irminger Sea, North Atlantic. Prog. Oceanogr. 72, 313–342 (2007).
Google Scholar
Tarling, G. A. et al. Can a key boreal Calanus copepod species now complete its life-cycle in the Arctic? Evidence and implications for Arctic food-webs. Ambio 51, 333–344 (2022).
Google Scholar
Purcell, J. E., Juhl, A. R., Manko, M. K. & Aumack, C. F. Overwintering of gelatinous zooplankton in the coastal Arctic Ocean. Mar. Ecol. Prog. Ser. 591, 281–286 (2018).
Google Scholar
Purcell, J. E., Hopcroft, R. R., Kosobokova, K. N. & Whitledge, T. E. Distribution, abundance, and predation effects of epipelagic ctenophores and jellyfish in the western Arctic Ocean. Deep-Sea Res. Part II(57), 127–135 (2010).
Google Scholar
Solvang, H. K. et al. Distribution of rorquals and Atlantic cod in relation to their prey in the Norwegian high Arctic. Polar Biol. 44, 761–782 (2021).
Google Scholar
Ingvaldsen, R. B. et al. Physical manifestations and ecological implications of Arctic Atlantification. Nat. Rev. Earth Environ. 2, 874–889 (2021).
Google Scholar
Flores, H. et al. Macrofauna under sea ice and in the open surface layer of the Lazarev Sea, Southern Ocean. Deep-Sea Res. Part II(58), 1948–1961 (2011).
Google Scholar
Godø, O. R., Valdemarsen, J. W. & Engås, A. Comparison of efficiency of standard and experimental juvenile gadoid sampling trawls. ICES Mar. Sci. Symp. 196, 196–201 (1993).
Klevjer, T. et al. Micronekton biomass distribution, improved estimates across four north Atlantic basins. Deep-Sea Res. Part II. 180, 104691 (2020).
Google Scholar
Krafft, B. A. et al. Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008. Polar Biol. 33, 957–968 (2010).
Google Scholar
Foote, K. G. Maintaining precision calibrations with optimal copper spheres. J. Acoust. Soc. Am. 73, 1054–1063 (1983).
Google Scholar
Korneliussen, R. J. et al. Acoustic identification of marine species using a feature library. Methods Oceanogr. 17, 187–205 (2016).
Google Scholar
Lavergne, T. et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere. 13, 49–78 (2019).
Google Scholar
Firing, E., Ramada, J. & Caldwell, P. Processing ADCP Data with the CODAS Software System Version 3.1. Joint Institute for Marine and Atmospheric Research University of Hawaii. http://currents.soest.hawaii.edu/docs/adcp_doc/index.html (1995).
Padman, L. & Erofeeva, S. A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett. 31, 256 (2004).
Google Scholar
Source: Ecology - nature.com