in

Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification

  • Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.

    Article 
    CAS 

    Google Scholar 

  • Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, et al. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu Rev Pub Health. 2017;38:259–77.

    Article 

    Google Scholar 

  • Brown AR, Lilley M, Shutler J, Lowe C, Artioli Y, Torres R, et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev Aquac. 2020;12:1663–88.

    Google Scholar 

  • Bates SS, Hubbard KA, Lundholm N, Montresor M, Leaw CP. Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae. 2018;79:3–43.

    Article 

    Google Scholar 

  • Silver MW, Bargu S, Coale SL. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic pacific. Proc Natl Acad Sci. 2010;107:20762–67.

    Article 
    CAS 

    Google Scholar 

  • Trick CG, Bill BD, Cochlan WP, Wells ML, Trainer VL, Pickell LD. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proc Natl Acad Sci. 2010;107:5887–92.

    Article 
    CAS 

    Google Scholar 

  • Hallegraeff G, Enevoldsen H, Zingone A. Global harmful algal bloom status reporting. Harmful Algae. 2021;102:101992.

    Article 

    Google Scholar 

  • McKibben SM, Peterson W, Wood AM, Trainer VL, Hunter M, White AE. Climatic regulation of the neurotoxin domoic acid. Proc Natl Acad Sci. 2017;114:239–44.

    Article 
    CAS 

    Google Scholar 

  • Clark S, Hubbard KA, Ralston DK, McGillicuddy DJ, Stocke C, Alexander MA, et al. Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine. J Mar Syst. 2022;230:103737.

    Article 

    Google Scholar 

  • Trainer VL, Kudela RM, Hunter MV, Adams NG, McCabe RM. Climate extreme seeds a new domoic ccid hotspot on the US West Coast. Front Clim. 2020;2:1–11.

    Article 

    Google Scholar 

  • Hinder SL, Hays GC, Edwards M, Roberts EC, Walne AW, Gravenor MB. Changes in marine dinoflagellate and diatom abundance under climate change. Nat Clim Change. 2012;2:271–75.

    Article 

    Google Scholar 

  • Sun J, Hutchins DA, Feng Y, Seubert EL, Caron DA, Fu FX. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnol Oceanogr. 2011;56:829–40.

    Article 
    CAS 

    Google Scholar 

  • Zhu Z, Qu P, Fu F, Tennenbaum N, Tatters AO, Hutchins DA. Understanding the blob bloom: warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. Harmful Algae. 2017;67:36–43.

    Article 
    CAS 

    Google Scholar 

  • Radan RL, Cochlan WP. Differential toxin response of Pseudo-nitzschia multiseries as a function of nitrogen speciation in batch and continuous cultures, and during a natural assemblage experiment. Harmful Algae. 2018;73:12–29.

    Article 
    CAS 

    Google Scholar 

  • Wingert CJ, Cochlan WP. Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae. 2021;107:102030.

    Article 
    CAS 

    Google Scholar 

  • Auro ME, Cochlan WP. Nitrogen utilization and toxin production by two diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidate and P. fryxelliana. J Phycol. 2013;49:156–69.

    Article 
    CAS 

    Google Scholar 

  • Lundholm N, Clarke A, Ellegaard M. A 100-year record of changing Pseudo-nitzschia species in a sill-fjord in Denmark related to nitrogen loading and temperature. Harmful Algae. 2010;9:449–57.

    Article 

    Google Scholar 

  • Ryan JP, Kudela RM, Birch JM, Blum M, Bower HA, Chavez FP, et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys Res Lett. 2017;44:5571–79.

    Article 

    Google Scholar 

  • McCabe RM, Hickey BM, Kudela RM, Lefebvre KA, Adams NG, Bill BD, et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett. 2016;43:10,366–76.

    Article 

    Google Scholar 

  • Tatters AO, Fu FX, Hutchins DA. High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One. 2012;7:e32116.

    Article 
    CAS 

    Google Scholar 

  • Lundholm N, Hansen PJ, Kotaki Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar Ecol Prog Ser. 2004;273:1–15.

    Article 
    CAS 

    Google Scholar 

  • Trimborn S, Lundholm N, Thoms S, Richter KW, Krock B, Hansen P, et al. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry. Physiol Plant. 2008;133:92–105.

    Article 
    CAS 

    Google Scholar 

  • Brunson JK, McKinnie SMK, Chekan JR, McCrow JP, Miles ZD, Bertrand EM, et al. Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science. 2018;361:1356–58.

    Article 
    CAS 

    Google Scholar 

  • Boissonneault KR, Henningsen BM, Bates SS, Robertson DL, Milton S, Pelletier J, et al. Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries. BMC Mole Biol. 2013;14:1–19.

    Google Scholar 

  • Pierrot DE, Lewis E, Wallace DWR MS Excel program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of. Energy, Oak Ridge, TN. 2006; Retrieved from https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a.

  • Brzezinski MA, Nelson DM. The annual silica cycle in the Sargasso Sea near Bermuda. Deep-Sea Res Pt I Oceanogr Res Papers. 1995;42:1215–37.

    Article 
    CAS 

    Google Scholar 

  • Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Change. 2014;4:1024–30.

    Article 

    Google Scholar 

  • Schaum CE, Barton S, Bestion E, Buckling A, Garcia-Carreras B, Lopez P, et al. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat Ecol Evol. 2017;1:0094.

    Article 

    Google Scholar 

  • Wang Z, Maucher-Fuquay J, Fire SE, Mikulski CM, Haynes B, Doucette GJ, et al. Optimization of solid-phase extraction and liquid chromatography–tandem mass spectrometry for the determination of domoic acid in seawater, phytoplankton, and mammalian fluids and tissues. Anal Chim Acta. 2012;715:71–9.

    Article 
    CAS 

    Google Scholar 

  • Brandenburg KM, Velthuis M, Van de Waal DB. Meta-analysis reveals enhanced growth of marine harmful algae from temperate regions with warming and elevated CO2 levels. Glob Change Biol. 2019;25:2607–18.

    Article 

    Google Scholar 

  • Wohlrab S, John U, Klemm K, Rberlein T, Grivogiannis AMF, Krock B, et al. Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton. Harmful Algae. 2020;92:101697.

    Article 
    CAS 

    Google Scholar 

  • Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, et al. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Sci Total Environ. 2021;771:145167.

    Article 
    CAS 

    Google Scholar 

  • Trainer VL, Bates SS, Lundholm N, Thessen AE, Cochlan WP, Adams NG, et al. Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae. 2012;14:271–300.

    Article 

    Google Scholar 

  • Zhu Z, Qu P, Gale J, Fu F, Hutchins DA. Individual and interactive effects of warming and CO2 on Pseudo-nitzschia subcurvata and Phaeocystis antarctica, two dominant phytoplankton from the Ross Sea, Antarctica. Biogeosciences. 2017;14:5281–95.

    Article 
    CAS 

    Google Scholar 

  • Hutchins DA, Walworth NG, Webb EA, Saito MA, Moran D, McIlvin MR, et al. Irreversibly increased N2 fixation in Trichodesmium experimentally adapted to high CO2. Nat Commun. 2015;6:8155.

    Article 

    Google Scholar 

  • Walworth NG, Lee MD, Fu FX, Hutchins DA, Webb EA. Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium. P Natl Acad Sci. 2016;113:E7367–74.

    Article 
    CAS 

    Google Scholar 

  • Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun. 2018;9:1719.

    Article 

    Google Scholar 

  • Hutchins DA, Capone DG. The ocean nitrogen cycle: New developments and global change. Nat Rev Microbiol. 2022;20:401–14.

    Article 
    CAS 

    Google Scholar 

  • Xu D, Tong S, Wang B, Zhang X, Wang W, Zhang X, et al. Ocean acidification stimulation of phytoplankton growth depends on the extent of departure from the optimal growth temperature. Mar Pollut Bull. 2022;177:113510.

    Article 
    CAS 

    Google Scholar 

  • Hennon GMM, Sefbom J, Schaum E, Dyhrman ST, Godhe A Studying the acclimation and adaptation of HAB species to changing environmental conditions. In: Wells ML, et al. (eds.). GlobalHAB. 2021. Guidelines for the Study of Climate Change Effects on HABs. Paris: UNESCO-IOC/SCOR, 2021. pp 64–78.

  • Collins S, Bell G. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature. 2004;431:566–9.

    Article 
    CAS 

    Google Scholar 

  • Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol. 2012;2:1195–207.

    Article 

    Google Scholar 

  • Tatters AO, Schnetzer A, Fu F, Lie AY, Caron DA, Hutchins DA. Short‐versus long‐term responses to changing CO2 in a coastal dinoflagellate bloom: Implications for interspecific competitive interactions and community structure. Evolution. 2013;67:1879–91.

    Article 

    Google Scholar 

  • Schaum CE, Collins S. Plasticity predicts evolution in a marine alga. P Roy Soc B-Biol Sci. 2014;281:20141486.

    Google Scholar 

  • Moran XAG, Lopez-Urrutia Á, Calvo-Díaz A, Li WKW. Increasing importance of small phytoplankton in a warmer ocean. Glob Change Biol. 2010;16:1137–44.

    Article 

    Google Scholar 

  • Thomas MK, Kremer CT, Klausmeier CA, Litchman EA. Global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–88.

    Article 
    CAS 

    Google Scholar 

  • Toseland ADSJ, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change. 2013;3:979–84.

    Article 
    CAS 

    Google Scholar 

  • Collins S. Many Possible Worlds: Expanding the Ecological Scenarios in Experimental Evolution. Evol Biol. 2011;38:3–14.

    Article 

    Google Scholar 

  • Qu PP, Fu F, Wang XW, Kling JD, Elghazzawy M, Huh M, et al. Two co‐dominant nitrogen‐fixing cyanobacteria demonstrate distinct acclimation and adaptation responses to cope with ocean warming. Env Microbiol Rep. 2022;14:203–17.

    Article 
    CAS 

    Google Scholar 

  • Lande R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol. 2009;22:1435–46.

    Article 

    Google Scholar 

  • Draghi J, Whitlock MC. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 2012;66:2891–902.

    Article 

    Google Scholar 

  • Collins S, Rost B, Rynearson TA. Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl. 2014;7:140–55.

    Article 
    CAS 

    Google Scholar 

  • Kim H, Spivack AJ, Menden-Deuer S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: Implications for bloom formation in an acidified ocean. Harmful Algae. 2013;26:1–11.

    Article 
    CAS 

    Google Scholar 

  • Hennon GMM, Quay P, Morales RL, Swanson LM, Armbrust EV. Acclimation conditions modify physiological response of the diatom Thalassiosira pseudonana to elevated CO2 concentrations in a nitrate-limited chemostat. J Phycol. 2014;50:243–53.

    Article 
    CAS 

    Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U. Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci. 2009;106:12788–93.

    Article 
    CAS 

    Google Scholar 

  • Atkinson D, Ciotti BJ, Montagnes DJS. Protists decrease in size linearly with temperature: ca. 2.5% °C-1. Proc R Soc Lond B 2003;270:2605–11.

    Article 

    Google Scholar 

  • Tong S, Gao K, Hutchins DA. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO2. Glob Chang Biol 2018;24:3055–64.

    Article 

    Google Scholar 

  • Kelly KJ, Fu FX, Jiang X, Li H, Xu D, Yang N, et al. Interactions between ultraviolet B radiation, warming, and changing nitrogen source may reduce the accumulation of toxic Pseudo-nitzschia multiseries biomass in future coastal oceans. Front Mar Sci. 2021;8:433.

    Article 

    Google Scholar 

  • Sterner R, Elser, J Ecological stoichiometry. In: Levin SA, et al. (eds) The Princeton Guide to Ecology. Princeton Univ. Press, 2009. pp 376–85.

  • Petrou K, Baker KG, Nielsen DA, Hancock AM, Schulz KG, Davidson AT. Acidification diminishes diatom silica production in the Southern Ocean. Nat Clim Change 2019;9:781–86.

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Measuring the world’s cropland area

    The characteristics and impact of small and medium forest enterprises on sustainable forest management in Ghana