in

Nudibranch predation boosts sponge silicon cycling

  • Tréguer, P. J. et al. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences 18, 1269–1289 (2021).

    Article 
    ADS 

    Google Scholar 

  • Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).

    Article 
    ADS 

    Google Scholar 

  • Benoiston, A.-S. et al. The evolution of diatoms and their biogeochemical functions. Phil. Trans. R. Soc. B 372, 20160397 (2017).

    Article 

    Google Scholar 

  • de Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).

    Article 
    ADS 

    Google Scholar 

  • Folkers, M. & Rombouts, T. Sponges revealed: a synthesis of their overlooked ecological functions within aquatic ecosystems. In YOUMARES 9—The Oceans: Our Research, Our Future (eds. Jungblut, S. et al.) 181–193 (Springer International Publishing, 2020).

  • Kristiansen, S. & Hoell, E. E. The importance of silicon for marine production. Hydrobiologia 484, 21–31 (2002).

    Article 
    CAS 

    Google Scholar 

  • Henderson, M. J., Huff, D. D. & Yoklavich, M. M. Deep-sea coral and sponge taxa increase demersal fish diversity and the probability of fish presence. Front. Mar. Sci. 7, 593844 (2020).

    Article 

    Google Scholar 

  • McGrath, E. C., Woods, L., Jompa, J., Haris, A. & Bell, J. J. Growth and longevity in giant barrel sponges: Redwoods of the reef or pines in the Indo-Pacific?. Sci. Rep. 8, 15317 (2018).

    Article 
    ADS 

    Google Scholar 

  • Jochum, K. P., Wang, X. H., Vennemann, T. W., Sinha, B. & Muller, W. E. G. Siliceous deep-sea sponge Monorhaphis chuni: A potential paleoclimate archive in ancient animals. Chem. Geol. 300, 143–151 (2012).

    Article 
    ADS 

    Google Scholar 

  • Maldonado, M. et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles, and conservation concerns. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds. Rossi, S. et al.) vol. 1 145–184 (Springer International Publishing, 2017).

  • Maldonado, M. et al. Sponge skeletons as an important sink of silicon in the global oceans. Nat. Geosci. 12, 815–822 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Maldonado, M. et al. Siliceous sponges as a silicon sink: An overlooked aspect of benthopelagic coupling in the marine silicon cycle. Limnol. Oceanogr. 50, 799–809 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • López-Acosta, M. et al. Sponge contribution to the silicon cycle of a diatom-rich shallow bay. Limnol. Oceanogr. 67, 2431–2447 (2022).

    Article 
    ADS 

    Google Scholar 

  • Maldonado, M. et al. Massive silicon utilization facilitated by a benthic-pelagic coupled feedback sustains deep-sea sponge aggregations. Limnol. Oceanogr. 66, 366–391 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wulff, J. L. Ecological interactions of marine sponges. Can. J. Zool. 84, 146–166 (2006).

    Article 

    Google Scholar 

  • Pawlik, J. R., Loh, T.-L. & McMurray, S. E. A review of bottom-up vs. top-down control of sponges on Caribbean fore-reefs: What’s old, what’s new, and future directions. PeerJ 6, 4343 (2018).

    Article 

    Google Scholar 

  • Dayton, P. K., Robilliard, G. A., Paine, R. T. & Dayton, L. B. Biological Accommodation in the Benthic Community at McMurdo Sound, Antartica. Ecol. Monogr. 44, 105–128 (1974).

    Article 

    Google Scholar 

  • Meylan, A. Spongivory in hawksbill turtles: A diet of glass. Science 239, 393–395 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wulff, J. Sponge-feeding by Caribbean angelfishes, trunk-fishes, and filefishes. In Sponges in time and space 265–271 (A. A. Balkema, 1994).

  • Santos, C. P., Coutinho, A. B. & Hajdu, E. Spongivory by Eucidaris tribuloides from Salvador, Bahia (Echinodermata: Echinoidea). J. Mar. Biol. Ass. 82, 295–297 (2002).

    Article 

    Google Scholar 

  • Chu, J. W. F. & Leys, S. P. The dorid nudibranchs Peltodoris lentiginosa and Archidoris odhneri as predators of glass sponges. Invertebr. Biol. 131, 75–81 (2012).

    Article 

    Google Scholar 

  • Maschette, D. et al. Characteristics and implications of spongivory in the Knifejaw Oplegnathus woodwardi (Waite) in temperate mesophotic waters. J. Sea Res. 157, 101847 (2020).

    Article 

    Google Scholar 

  • Knowlton, A. L. & Highsmith, R. C. Nudibranch-sponge feeding dynamics: Benefits of symbiont-containing sponge to Archidoris montereyensis (Cooper, 1862) and recovery of nudibranch feeding scars by Halichondria panicea (Pallas, 1766). J. Exp. Mar. Biol. Ecol. 327, 36–46 (2005).

    Article 

    Google Scholar 

  • Bloom, S. A. Morphological correlations between dorid nudibranch predators and sponge prey. Veliger 18, 289–301 (1976).

    Google Scholar 

  • Faulkner, D. & Ghiselin, M. Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar. Ecol. Prog. Ser. 13, 295–301 (1983).

    Article 
    ADS 

    Google Scholar 

  • Bloom, S. A. Specialization and noncompetitive resource partitioning among sponge-eating dorid nudibranchs. Oecologia 49, 305–315 (1981).

    Article 
    ADS 

    Google Scholar 

  • Clark, K. B. Nudibranch life cycles in the Northwest Atlantic and their relationship to the ecology of fouling communities. Helgolander Wiss. Meeresunters 27, 28–69 (1975).

    Article 
    ADS 

    Google Scholar 

  • Wulff, J. Regeneration of sponges in ecological context: Is regeneration an integral part of life history and morphological strategies?. Integr. Comp. Biol. 50, 494–505 (2010).

    Article 

    Google Scholar 

  • Wu, Y.-C., Franzenburg, S., Ribes, M. & Pita, L. Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer. Sci. Rep. 12, 1307 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Turner, T. The marine sponge Hymeniacidon perlevis is a globally-distributed exotic species. Aquat. Invasions 15, 542–561 (2020).

    Article 

    Google Scholar 

  • Ackers, R. G., Moss, D. & Picton, B. E. In Sponges of the British Isles (‘Sponge V’). vol. A Colour Guide and Working Document (Marine Conservation Society, 1992).

  • Lima, P. O. V. & Simone, L. R. L. Anatomical review of Doris verrucosa and redescription of Doris januarii (Gastropoda, Nudibranchia) based on comparative morphology. J. Mar. Biol. Ass. 95, 1203–1220 (2015).

    Article 

    Google Scholar 

  • Avila, C. et al. Biosynthetic origin and anatomical distribution of the main secondary metabolites in the nudibranch mollusc Doris verrucosa. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 97, 363–368 (1990).

    Article 

    Google Scholar 

  • Urgorri, V. & Besteiro, C. The feeding habits of the nudibranchs of Galicia. Iberus 4, 51–58 (1984).

    Google Scholar 

  • Aminot, A. & Kerouel, R. In Dosage automatique des nutriments dans les eaux marines: Méthodes en flux continu. Méthodes d’analyse en milieu marin, Ed. Ifremer 188 (2007).

  • Hydes, D. J. & Liss, P. S. Fluorimetric method for the determination of low concentrations of dissolved aluminium in natural waters. Analyst 101, 922 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • López-Acosta, M., Leynaert, A., Coquille, V. & Maldonado, M. Silicon utilization by sponges: An assessment of seasonal changes. Mar. Ecol. Prog. Ser. 605, 111–123 (2018).

    Article 
    ADS 

    Google Scholar 

  • Grall, J., Le-Loch, F., Guyonnet, B. & Riera, P. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338, 1–15 (2006).

    Article 
    CAS 

    Google Scholar 

  • Cebrian, E., Uriz, M. J., Garrabou, J. & Ballesteros, E. Sponge Mass Mortalities in a warming Mediterranean sea: Are cyanobacteria-harboring species worse off?. PLoS ONE 6, e20211 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McClintock, J. B. Investigation of the relationship between invertebrate predation and biochemical composition, energy content, spicule armament and toxicity of benthic sponges at McMurdo Sound, Antartica. Mar. Biol. 94, 479–487 (1987).

    Article 
    CAS 

    Google Scholar 

  • Cockburn, T. C. & Reid, R. G. B. Digestive tract enzymes in two Aeolid nudibranchs (opisthobranchia: Gastropoda). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 65, 275–281 (1980).

    Article 

    Google Scholar 

  • De Caralt, S., Uriz, M. & Wijffels, R. Grazing, differential size-class dynamics and survival of the Mediterranean sponge Corticium candelabrum. Mar. Ecol. Prog. Ser. 360, 97–106 (2008).

    Article 
    ADS 

    Google Scholar 

  • Ragueneau, O., De-Blas-Varela, E., Tréguer, P., Quéguiner, B. & Del Amo, Y. Phytoplankton dynamics in relation to the biogeochemical cycle of silicon in a coastal ecosystem of western Europe. Mar. Ecol. Prog. Ser. 106, 157–172 (1994).

    Article 
    ADS 

    Google Scholar 

  • Turon, X., Tarjuelo, I. & Uriz, M. J. Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: Correlation with population structure and investment in defence: Growth and mortality of encrusting sponges. Funct. Ecol. 12, 631–639 (1998).

    Article 

    Google Scholar 

  • Hoppe, W. F. Growth, regeneration and predation in three species of large coral reef sponges. Mar. Ecol. Prog. Ser. 50, 117–125 (1988).

    Article 
    ADS 

    Google Scholar 

  • Ayling, A. L. Growth and regeneration rates in thinly encrusting Demospongiae from temperate waters. Biol. Bull. 165, 343–352 (1983).

    Article 

    Google Scholar 

  • Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr. Biol. 23, 1330–1334 (2013).

    Article 
    CAS 

    Google Scholar 

  • Dayton, P. K. et al. Benthic responses to an Antarctic regime shift: Food particle size and recruitment biology. Ecol. Appl. 29, 1 (2019).

    Article 

    Google Scholar 

  • Guy, G. & Metaxas, A. Recruitment of deep-water corals and sponges in the Northwest Atlantic Ocean: Implications for habitat distribution and population connectivity. Mar. Biol. 169, 107 (2022).

    Article 

    Google Scholar 

  • Beucher, C., Treguer, P., Corvaisier, R., Hapette, A. M. & Elskens, M. Production and dissolution of biosilica, and changing microphytoplankton dominance in the Bay of Brest (France). Mar. Ecol. Prog. Ser. 267, 57–69 (2004).

    Article 
    ADS 

    Google Scholar 

  • López-Acosta, M., Leynaert, A. & Maldonado, M. Silicon consumption in two shallow-water sponges with contrasting biological features. Limnol. Oceanogr. 61, 2139–2150 (2016).

    Article 
    ADS 

    Google Scholar 

  • Ellwood, M. J., Wille, M. & Maher, W. Glacial silicic acid concentrations in the Southern Ocean. Science 330, 1088–1091 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Maldonado, M. et al. Cooperation between passive and active silicon transporters clarifies the ecophysiology and evolution of biosilicification in sponges. Sci. Adv. 6, eaba9322 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Palumbi, S. R. Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225, 1478–1480 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Broadribb, M., Bell, J. J. & Rovellini, A. Rapid acclimation in sponges: Seasonal variation in the organic content of two intertidal sponge species. J. Mar. Biol. Ass. 101, 983–989 (2021).

    Article 
    CAS 

    Google Scholar 

  • Schönberg, C. H. L. & Barthel, D. Inorganic skeleton of the demosponge Halichondria panacea. Seasonality in spicule production in the Baltic Sea. Mar. Biol. 130, 133–140 (1997).

    Article 

    Google Scholar 

  • Sheild, C. J. & Witman, J. D. The impact of Henricia sanguinolenta (O. F. Müller) (Echinodermata: Asteroidea) predation on the finger sponges, Isodictya spp.. J. Exp. Mar. Biol. Ecol. 166, 107–133 (1993).

    Article 

    Google Scholar 

  • Lewis, J. R., Bowman, R. S., Kendall, M. A. & Williamson, P. Some geographical components in population dynamics: Possibilities and realities in some littoral species. Neth. J. Sea Res. 16, 18–28 (1982).

    Article 

    Google Scholar 

  • Ashton, G. V. et al. Predator control of marine communities increases with temperature across 115 degrees of latitude. Science 376, 1215–1219 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Knowlton, A. & Highsmith, R. Convergence in the time-space continuum: A predator-prey interaction. Mar. Ecol. Prog. Ser. 197, 285–291 (2000).

    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Measuring the world’s cropland area

    The characteristics and impact of small and medium forest enterprises on sustainable forest management in Ghana