in

Multifunctionality of temperate alley-cropping agroforestry outperforms open cropland and grassland

[adace-ad id="91168"]
  • Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article 
    CAS 

    Google Scholar 

  • Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article 

    Google Scholar 

  • Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).

    Article 
    CAS 

    Google Scholar 

  • Zhang, W., Ricketts, T. H., Kremen, C., Carney, K. & Swinton, S. M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64, 253–260 (2007).

    Article 

    Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    Article 
    CAS 

    Google Scholar 

  • Helming, K. et al. Managing soil functions for a sustainable bioeconomy-assessment framework and state of the art. Land Degrad. Dev. 29, 3112–3126 (2018).

    Article 

    Google Scholar 

  • Rockström, J. et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17 (2017).

    Article 

    Google Scholar 

  • Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).

    Article 

    Google Scholar 

  • Smith, J., Pearce, B. D. & Wolfe, M. S. Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renew. Agric. Food Syst. 28, 80–92 (2013).

    Article 

    Google Scholar 

  • European Commission. A Greener and Fairer CAP (EC, 2021).

  • Grass, I. et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mayer, S. et al. Soil organic carbon sequestration in temperate agroforestry systems – a meta-analysis. Agric. Ecosyst. Environ. 323, 107689 (2022).

    Article 
    CAS 

    Google Scholar 

  • Pardon, P. et al. Juglans regia (walnut) in temperate arable agroforestry systems: effects on soil characteristics, arthropod diversity and crop yield. Renew. Agric. Food Syst. 35, 533–549 (2020).

    Article 

    Google Scholar 

  • Schmidt, M. et al. Nutrient saturation of crop monocultures and agroforestry indicated by nutrient response efficiency. Nutr. Cycl. Agroecosyst. 119, 69–82 (2021).

    Article 
    CAS 

    Google Scholar 

  • Beule, L. & Karlovsky, P. Tree rows in temperate agroforestry croplands alter the composition of soil bacterial communities. PLoS ONE 16, e0246919 (2021).

    Article 
    CAS 

    Google Scholar 

  • Palma, J. H. N. et al. Modeling environmental benefits of silvoarable agroforestry in Europe. Agric. Ecosyst. Environ. 119, 320–334 (2007).

    Article 

    Google Scholar 

  • Kay, S. et al. Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale. Agroforest Syst. 92, 1075–1089 (2018).

    Article 

    Google Scholar 

  • Swieter, A., Langhof, M., Lamerre, J. & Greef, J. M. Long-term yields of oilseed rape and winter wheat in a short rotation alley cropping agroforestry system. Agroforest Syst. 93, 1853–1864 (2019).

    Article 

    Google Scholar 

  • Ivezić, V., Yu, Y. & van der Werf, W. Crop yields in European agroforestry systems: a meta-analysis. Front. Sustain. Food Syst. 5, 606631 (2021).

    Article 

    Google Scholar 

  • Cardinael, R. et al. High organic inputs explain shallow and deep SOC storage in a long-term agroforestry system – combining experimental and modeling approaches. Biogeosciences 15, 297–317 (2018).

    Article 
    CAS 

    Google Scholar 

  • Smith, P. Carbon sequestration in croplands: the potential in Europe and the global context. Eur. J. Agron. 20, 229–236 (2004).

    Article 
    CAS 

    Google Scholar 

  • Kay, S. et al. Agroforestry creates carbon sinks whilst enhancing the environment in agricultural landscapes in Europe. Land Use Policy 83, 581–593 (2019).

    Article 

    Google Scholar 

  • Cardinael, R. et al. Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon — a case study in a Mediterranean context. Geoderma 259–260, 288–299 (2015).

    Article 

    Google Scholar 

  • Cardinael, R. et al. Spatial variation of earthworm communities and soil organic carbon in temperate agroforestry. Biol. Fertil. Soils 55, 171–183 (2019).

    Article 
    CAS 

    Google Scholar 

  • Boinot, S. et al. Alley cropping agroforestry systems: reservoirs for weeds or refugia for plant diversity? Agric. Ecosyst. Environ. 284, 106584 (2019).

    Article 

    Google Scholar 

  • Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).

    Article 

    Google Scholar 

  • Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).

    Article 

    Google Scholar 

  • DuPont, S. T., Culman, S. W., Ferris, H., Buckley, D. H. & Glover, J. D. No-tillage conversion of harvested perennial grassland to annual cropland reduces root biomass, decreases active carbon stocks, and impacts soil biota. Agric. Ecosyst. Environ. 137, 25–32 (2010).

    Article 
    CAS 

    Google Scholar 

  • Bengtsson, J. et al. Grasslands-more important for ecosystem services than you might think. Ecosphere 10, e02582 (2019).

    Article 

    Google Scholar 

  • Beule, L. et al. Conversion of monoculture cropland and open grassland to agroforestry alters the abundance of soil bacteria, fungi and soil-N-cycling genes. PLoS ONE 14, e0218779 (2019).

    Article 
    CAS 

    Google Scholar 

  • Borrelli, P., Ballabio, C., Panagos, P. & Montanarella, L. Wind erosion susceptibility of European soils. Geoderma 232–234, 471–478 (2014).

    Article 

    Google Scholar 

  • Amundson, R. et al. Soil and human security in the 21st century. Science 348, 12610711–12610716 (2015).

    Article 

    Google Scholar 

  • Olson, K. R., Al-Kaisi, M., Lal, R. & Cihacek, L. Impact of soil erosion on soil organic carbon stocks. J. Soil Water Conserv. 71, 61A–67A (2016).

    Article 

    Google Scholar 

  • Larney, F. J., Bullock, M. S., Janzen, H. H., Ellert, B. H. & Olson, E. C. S. Wind erosion effects on nutrient redistribution and soil productivity. J. Soil Water Conserv. 53, 133–140 (1998).

    Google Scholar 

  • de Jong, E. & Kowalchuk, T. E. The effect of shelterbelts on erosion and soil properties. Soil Sci. 159, 337–345 (1995).

    Article 

    Google Scholar 

  • Deutsch, M. & Otter, V. Nachhaltigkeit und förderung? Akzeptanzfaktoren im Entscheidungsprozess deutscher Landwirte zur Anlage von Agroforstsystemen. Berichte über Landwirtschaft – Zeitschrift für Agrarpolitik und Landwirtschaft Aktuelle Beiträge (2021).

  • Tsonkova, P., Böhm, C., Quinkenstein, A. & Freese, D. Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review. Agroforest Syst. 85, 133–152 (2012).

    Article 

    Google Scholar 

  • Lehmann, J., Weigl, D., Droppelmann, K., Huwe, B. & Zech, W. Nutrient cycling in an agroforestry system with runoff irrigation in Northern Kenya. Agroforestry Syst. 43, 49–70 (1998).

    Article 

    Google Scholar 

  • Shao, G. et al. Impacts of monoculture cropland to alley cropping agroforestry conversion on soil N2O emissions. GCB Bioenergy https://doi.org/10.1111/gcbb.13007 (2022).

  • Isaac, M. E. & Borden, K. A. Nutrient acquisition strategies in agroforestry systems. Plant Soil 444, 1–19 (2019).

    Article 
    CAS 

    Google Scholar 

  • Cannell, M. G. R., van Noordwijk, M. & Ong, C. K. The central agroforestry hypothesis: the trees must acquire resources that the crop would not otherwise acquire. Agroforestry Syst. 34, 27–31 (1996).

    Article 

    Google Scholar 

  • Beule, L., Vaupel, A. & Moran-Rodas, V. E. Abundance, diversity, and function of soil microorganisms in temperate alley-cropping agroforestry systems: a review. Microorganisms 10, 616 (2022).

    Article 
    CAS 

    Google Scholar 

  • Thevathasan, N. V. & Gordon, A. M. in New Vistas in Agroforestry, Vol. 1 (eds Nair, P. K. R., Rao, M. R. & Buck, L. E.) 257–268 (Springer Netherlands, 2004).

  • Veldkamp, E. & Keller, M. Fertilizer-induced nitric oxide emissions from agricultural soils. Nutr. Cycling Agroecosyst. 48, 69–77 (1997).

    Article 
    CAS 

    Google Scholar 

  • Luo, J., Beule, L., Shao, G., Veldkamp, E. & Corre, M. D. Reduced soil gross N2O emission driven by substrates rather than denitrification gene abundance in cropland agroforestry and monoculture. JGR Biogeosciences 127, e2021JG006629 (2022).

    Article 
    CAS 

    Google Scholar 

  • Langenberg, J., Feldmann, M. & Theuvsen, L. Alley cropping agroforestry systems: using Monte-Carlo simulation for a risk analysis in comparison with arable farming systems. German J. Agric. Econ. 67, 95–112 (2018).

    Google Scholar 

  • Otter, V. & Langenberg, J. Willingness to pay for environmental effects of agroforestry systems: a PLS-model of the contingent evaluation from German taxpayers’ perspective. Agroforest Syst. 94, 811–829 (2020).

    Article 

    Google Scholar 

  • Zhang, X. et al. Quantification of global and national nitrogen budgets for crop production. Nat. Food 2, 529–540 (2021).

    Article 

    Google Scholar 

  • Markwitz, C., Knohl, A. & Siebicke, L. Evapotranspiration over agroforestry sites in Germany. Biogeosciences 17, 5183–5208 (2020).

    Article 

    Google Scholar 

  • Pardon, P. et al. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agric. Ecosyst. Environ. 247, 98–111 (2017).

    Article 
    CAS 

    Google Scholar 

  • European Commission. Commission regulation (EC) No 1120/2009 (EC, 2009).

  • Piñeiro, V. et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nat. Sustain. 3, 809–820 (2020).

    Article 

    Google Scholar 

  • Kay, S. et al. Agroforestry is paying off – economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosyst. Serv. 36, 100896 (2019).

    Article 

    Google Scholar 

  • European Council. Council agrees its position on the next EU common agricultural policy. Press release. https://www.consilium.europa.eu/en/press/press-releases/2020/10/21/council-agrees-its-position-on-the-next-eu-common-agricultural-policy/ (2020).

  • IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps (FAO, 2014).

  • Garland, G. et al. A closer look at the functions behind ecosystem multifunctionality: a review. J. Ecol. 109, 600–613 (2021).

    Article 

    Google Scholar 

  • Naumann, C. & Bassler, R. Die Chemische Untersuchung von Futtermitteln 3. Auflage (Chemical Analysis of Feedstuff 3rd Edition) (VDLUFA-Verlag, 1976).

  • Beule, L., Lehtsaar, E., Rathgeb, A. & Karlovsky, P. Crop diseases and mycotoxin accumulation in temperate agroforestry systems. Sustainability 11, 2925 (2019).

    Article 
    CAS 

    Google Scholar 

  • Verwijst, T. & Telenius, B. Biomass estimation procedures in short rotation forestry. For. Ecol. Manag. 121, 137–146 (1999).

    Article 

    Google Scholar 

  • Harris, D., Horwáth, W. R. & van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci. Soc. Am. J. 65, 1853–1856 (2001).

    Article 
    CAS 

    Google Scholar 

  • Blake, G. & Hartge, K. in Methods of Soil Analysis: Part 1 – Physical and Mineralogical Methods 363–375 (Americal Society of Agronomy, Inc., 1995).

  • Davidson, E. A., Hart, S. C., Shanks, C. A. & Firestone, M. K. Measuring gross nitrogen mineralization, and nitrification by 15N isotopic pool dilution in intact soil cores. J. Soil Sci. 42, 335–349 (1991).

    Article 
    CAS 

    Google Scholar 

  • Tiessen, H. & Moir, J. O. in Soil Sampling and Methods of Analysis Ch. 25 (CRC Press, 1993).

  • Beule, L. et al. Poplar rows in temperate agroforestry croplands promote bacteria, fungi, and denitrification genes in soils. Front. Microbiol. 10, 3108 (2020).

    Article 

    Google Scholar 

  • Ando, S. et al. Detection of nifH sequences in sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus [L.] Merr.). Soil Sci. Plant Nutr. 51, 303–308 (2005).

    Article 
    CAS 

    Google Scholar 

  • Singh, J., Singh, S. & Vig, A. P. Extraction of earthworm from soil by different sampling methods: a review. Environ. Dev. Sustain. 18, 1521–1539 (2016).

    Article 

    Google Scholar 

  • Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).

    Article 
    CAS 

    Google Scholar 

  • Shen, S. M., Pruden, G. & Jenkinson, D. S. Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biol. Biochem. 16, 437–444 (1984).

    Article 
    CAS 

    Google Scholar 

  • Marx, M.-C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).

    Article 
    CAS 

    Google Scholar 

  • Matson, A. L., Corre, M. D., Langs, K. & Veldkamp, E. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama. Biogeosciences 14, 3509–3524 (2017).

    Article 
    CAS 

    Google Scholar 

  • Wen, Y., Corre, M. D., Schrell, W. & Veldkamp, E. Gross N2O emission and gross N2O uptake in soils under temperate spruce and beech forests. Soil Biol. Biochem. 112, 228–236 (2017).

    Article 
    CAS 

    Google Scholar 

  • McKenzie, N. J., Green, T. W. & Jacquier, D. W. in Soil Physical Measurement and Interpretation for Land Evaluation 150–162 (Csiro Publishing, 2002).

  • Priesack, E. Expert-N model library documentation. https://expert-n.uni-hohenheim.de/en/documentation (2005).

  • Formaglio, G., Veldkamp, E., Duan, X., Tjoa, A. & Corre, M. D. Herbicide weed control increases nutrient leaching compared to mechanical weeding in a large-scale oil palm plantation. Biogeosciences 17, 5243–5262 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kroetsch, D. & Wang, C. in Soil sampling and methods of analysis (eds Angers, D. A. & Larney, F. J.) 713–725 (CRC Press, 2008).

  • Kurniawan, S. et al. Conversion of tropical forests to smallholder rubber and oil palm plantations impacts nutrient leaching losses and nutrient retention efficiency in highly weathered soils. Biogeosciences 15, 5131–5154 (2018).

    Article 
    CAS 

    Google Scholar 

  • Markwitz, C. Micrometeorological Measurements and Numerical Simulations of Turbulence and Evapotranspiration over Agroforestry (University of Göttingen, 2021).

  • Jarrah, M., Mayel, S., Tatarko, J., Funk, R. & Kuka, K. A review of wind erosion models: data requirements, processes, and validity. Catena 187, 104388 (2020).

    Article 

    Google Scholar 

  • van Ramshorst, J. G. V. et al. Reducing wind erosion through agroforestry: a case study using large eddy simulations. Sustainability 14, 13372 (2022).

    Article 

    Google Scholar 

  • Kanzler, M., Böhm, C., Mirck, J., Schmitt, D. & Veste, M. Microclimate effects on evaporation and winter wheat (Triticum aestivum L.) yield within a temperate agroforestry system. Agroforest Syst. 93, 1821–1841 (2019).

    Article 

    Google Scholar 

  • Clough, Y. et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat. Commun. 7, 13137 (2016).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Memory pays off

    Sensing with purpose