in

Climate change threatens olive oil production in the Levant

  • Liphschitz, N., Gophna, R., Hartman, M. & Biger, G. The beginning of olive (Olea europaea) cultivation in the Old World: a reassessment. J. Archaeol. Sci. 18, 441–453 (1991).

    Article 

    Google Scholar 

  • Blondel, J. & Aronson, J. Biology and Wildlife of the Mediterranean Region (Oxford Univ. Press, 1999).

  • Fall, P. L., Falconer, S. E. & Lines, L. Agricultural intensification and the secondary products revolution along the Jordan Rift. Hum. Ecol. 30, 445–482 (2002).

    Article 

    Google Scholar 

  • Terral, J.-F. et al. Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J. Biogeogr. 31, 63–77 (2004).

    Article 

    Google Scholar 

  • Chartzoulakis, K. Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric. Water Manag. 78, 108–121 (2005).

    Article 

    Google Scholar 

  • Vossen, P. Olive oil: history, production, and characteristics of the world’s classic oils. HortScience 42, 1093–1100 (2007).

    Article 

    Google Scholar 

  • Kaniewski, D. et al. Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. 87, 885–899 (2012).

    Article 

    Google Scholar 

  • Langgut, D. et al. The origin and spread of olive cultivation in the Mediterranean Basin: the fossil pollen evidence. Holocene 29, 902–922 (2019).

    Article 

    Google Scholar 

  • IPCC. AR5 Synthesis Report: Climate Change 2014 https://www.ipcc.ch/report/ar5/syr/ (IPCC, 2014).

  • IPCC. IPCC WGII Sixth Assessment Report. Cross-Chapter Paper 4: Mediterranean Region https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (IPCC, 2022).

  • Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398–403 (2010).

    Article 
    CAS 

    Google Scholar 

  • Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).

    Article 

    Google Scholar 

  • Santos, J. A., Costa, R. & Fraga, H. Climate change impacts on thermal growing conditions of main fruit species in Portugal. Clim. Change 140, 273–286 (2017).

    Article 

    Google Scholar 

  • Orlandi, F. et al. Impact of climate change on olive crop production in Italy. Atmosphere 11, 595 (2020).

    Article 

    Google Scholar 

  • Rodríguez Sousa, A. A., Barandica, J. M., Aguilera, P. A. & Rescia, A. J. Examining potential environmental consequences of climate change and other driving forces on the sustainability of Spanish olive groves under a socio-ecological approach. Agriculture 10, 509 (2020).

    Article 

    Google Scholar 

  • Besnard, G. et al. The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc. R. Soc. B 280, 20122833 (2013).

    Article 
    CAS 

    Google Scholar 

  • Besnard, G., Terral, J. F. & Cornille, A. On the origins and domestication of the olive: a review and perspectives. Ann. Bot. 121, 385–403 (2018).

    Article 

    Google Scholar 

  • Bartolini, G., Prevost, G., Messeri, C., Carignani, C. & Menini, U. G. Olive Germplasm: Cultivars and World-wide Collections (FAO, 1998).

  • Zohary, D. & Spiegel-Roy, P. Beginnings of fruit growing in the Old World. Science 187, 319–327 (1975).

    Article 
    CAS 

    Google Scholar 

  • Terral, J.-F. Wild and cultivated olive (Olea europaea L.): a new approach to an old problem using inorganic analyses of modern wood and archaeological charcoal. Rev. Palaeobot. Palynol. 91, 383–397 (1996).

    Article 

    Google Scholar 

  • Carrión, Y., Ntinou, M. & Badal, E. Olea europaea L. in the North Mediterranean basin during the Pleniglacial and the Early–Middle Holocene. Quat. Sci. Rev. 29, 952–968 (2010).

    Article 

    Google Scholar 

  • Zohary, M. Plants of the Bible (Cambridge Univ. Press, 1982).

  • Galili, E., Weinstein-Evron, M. & Zohary, D. Appearance of olives in submerged Neolithic sites along the Carmel Coast. J. Isr. Plant Sci. 22, 95–97 (1989).

    Google Scholar 

  • Galili, E., Stanley, D. J., Sharvit, J. & Weinstein-Evron, M. Evidence for earliest olive-oil production in submerged settlements off the Carmel Coast, Israel. J. Archaeol. Sci. 24, 1141–1150 (1997).

    Article 

    Google Scholar 

  • Galili, E. et al. Early production of table olives at a mid-7th millennium BP submerged site off the Carmel Coast (Israel). Sci. Rep. 11, 2218 (2021).

    Article 
    CAS 

    Google Scholar 

  • Fraga, H., Pinto, J. G., Viola, F. & Santos, J. A. Climate change projections for olive yields in the Mediterranean Basin. Int. J. Climatol. 40, 769–781 (2020).

    Article 

    Google Scholar 

  • Ben Zaied, Y. & Zouabi, O. Impacts of climate change on Tunisian olive oil output. Clim. Change 139, 535–549 (2016).

    Article 

    Google Scholar 

  • Brito, C., Dinis, L. T., Moutinho-Pereire, J. & Correia, C. M. Drought stress effects and olive tree acclimation under a changing climate. Plants 8, 232 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fraga, H., Moriondo, M., Leolini, L. & Santos, J. A. Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy 11, 56 (2021).

    Article 

    Google Scholar 

  • Trærup, S. & Stephan, J. Technologies for adaptation to climate change. Examples from the agricultural and water sectors in Lebanon. Clim. Change 131, 435–449 (2015).

    Article 

    Google Scholar 

  • Chalak, L. et al. Extent of the genetic diversity in Lebanese olive (Olea europaea L.) trees: a mixture of an ancient germplasm with recently introduced varieties. Genet. Resour. Crop. Evol. 62, 621–633 (2015).

    Article 

    Google Scholar 

  • Bou-Zeid, E. & El-Fadel, M. Climate change and water resources in Lebanon and the Middle East. J. Water Resour. Plan. Manag. 128, 343–355 (2002).

    Article 

    Google Scholar 

  • Ramadan, H. H., Beighley, R. E. & Ramamurthy, A. S. Sensitivity analysis of climate change impact on the hydrology of the Litani Basin in Lebanon. Int. J. Environ. Pollut. 52, 65–81 (2013).

    Article 
    CAS 

    Google Scholar 

  • Saade, J., Atieh, M., Ghanimeh, S. & Golmohammadi, G. Modeling impact of climate change on surface water availability using SWAT model in a semi-arid basin: case of El Kalb River, Lebanon. Hydrology 8, 134 (2021).

    Article 

    Google Scholar 

  • Halwani, J. & Halwani, B. in Climate Change in the Mediterranean and Middle Eastern Region (eds Filho, W. L. & Manolas, E.) 395–412 (Springer, 2022).

  • Aubet, M.E. in Nomads of the Mediterranean: Trade and Contact in the Bronze and Iron Ages (eds Gilboa, A. & Yasur-Landau, A.) 14–30 (Brill, 2020).

  • Bikai, P. M. The Pottery of Tyre (Aris & Phillips, 1979).

  • Hajar, L., Khater, C. & Cheddadi, R. Vegetation changes during the late Pleistocene and Holocene in Lebanon: a pollen record from the Bekaa Valley. Holocene 18, 1089–1099 (2008).

    Article 

    Google Scholar 

  • Hajar, L., Haïdar-Boustani, M., Khater, C. & Cheddadi, R. Environmental changes in Lebanon during the Holocene: man vs. climate impacts. J. Arid. Environ. 74, 746–755 (2010).

    Article 

    Google Scholar 

  • Cheddadi, R. & Khater, C. Climate change since the last glacial period in Lebanon and the persistence of Mediterranean species. Quat. Sci. Rev. 150, 146–157 (2016).

    Article 

    Google Scholar 

  • Ozturk, M. et al. An overview of olive cultivation in Turkey: botanical features, eco-physiology and phytochemical aspects. Agronomy 11, 295 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lionello, P., Congedi, L., Reale, M., Scarascia, L. & Tanzarella, A. Sensitivity of typical Mediterranean crops to past and future evolution of seasonal temperature and precipitation in Apulia. Reg. Environ. Change 14, 2025–2038 (2014).

    Article 

    Google Scholar 

  • Arenas-Castro, S., Gonçalves, J. F., Moreno, M. & Villar, R. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci. Total Environ. 709, 136161 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mechri, B., Tekaya, M., Hammami, M. & Chehab, H. Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea). Biochem. Syst. Ecol. 92, 104112 (2020).

    Article 
    CAS 

    Google Scholar 

  • Pedan, V., Popp, M., Rohn, S., Nyfeler, M. & Bongartz, A. Characterization of phenolic compounds and their contribution to sensory properties of olive oil. Molecules 24, 2041 (2019).

    Article 
    CAS 

    Google Scholar 

  • Dias, M. C., Pinto, D. C. G. A., Figueiredo, C., Santos, C. & Silva, A. M. S. Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery. Phytochemistry 185, 112695 (2021).

    Article 
    CAS 

    Google Scholar 

  • Peres, F. et al. Phenolic compounds of ‘Galega Vulgar’ and ‘Cobrançosa’ olive oils along early ripening stages. Food Chem. 211, 51–58 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tsimidou, M. Z. in Handbook of Olive Oil: Analysis and Properties (eds Aparicio, R. & Harwood, J.) 311–333 (Springer, 2013).

  • Valente, S. et al. Modulation of phenolic and lipophilic compounds of olive fruits in response to combined drought and heat. Food Chem. 329, 127191 (2020).

    Article 
    CAS 

    Google Scholar 

  • WCRP. World Research Climate Program https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 (WCRP, 2022).

  • Rallo, L. et al. in Advances in Plant Breeding Strategies: Fruits (eds Al-Khayri, J. et al.) (Springer, 2018).

  • Abou-Saaid, O. et al. Statistical approach to assess chill and heat requirements of olive tree based on flowering date and temperatures data: towards selection of adapted cultivars to global warming. Agronomy 12, 2975 (2022).

    Article 

    Google Scholar 

  • Faegri, K. & Iversen, I. Textbook of Pollen Analysis 4th edn. (Wiley, 1989).

  • Ferrara, G., Camposeo, S., Palasciano, M. & Godini, A. Production of total and stainable pollen grains in Olea europaea L. Grana 46, 85–90 (2007).

    Article 

    Google Scholar 

  • Kaniewski, D. et al. Wild or cultivated Olea europaea L. in the eastern Mediterranean during the Middle–Late Holocene? A pollen-numerical approach. Holocene 19, 1039–1047 (2009).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).

  • Hammer, O. & Harper, D. Paleontological Data Analysis (Blackwell, 2006).

  • Cheddadi, R. et al. Microrefugia, climate change, and conservation of Cedrus atlantica in the Rif Mountains, Morocco. Front. Ecol. Evol. 5, 114 (2017).

    Article 

    Google Scholar 

  • Kaniewski, D. et al. Cold and dry outbreaks in the eastern Mediterranean 3200 years ago. Geology 47, 933–937 (2019).

    Article 

    Google Scholar 

  • Kaniewski, D. et al. Recent anthropogenic climate change exceeds the rate and magnitude of natural Holocene variability on the Balearic Islands. Anthropocene 32, 100268 (2020).

    Article 

    Google Scholar 

  • Kaniewski, D. et al. Coastal submersions in the north-eastern Adriatic during the last 5200 years. Glob. Planet. Change 204, 103570 (2021).

    Article 

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • Akima, H. & Gebhardt, A. Akima: Interpolation of Irregularly and Regularly Spaced Data. R v.0.6-2 (R Foundation for Statistical Computing, 2016).

  • Ooms, J. D., Debroy, S., Wickham, H. & Horner, J. RMySQL: Database Interface and ‘MySQL’ Driver for R. R v.0.10.18 (R Foundation for Statistical Computing, 2019).

  • Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Formation of necromass-derived soil organic carbon determined by microbial death pathways

    Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments