Liphschitz, N., Gophna, R., Hartman, M. & Biger, G. The beginning of olive (Olea europaea) cultivation in the Old World: a reassessment. J. Archaeol. Sci. 18, 441–453 (1991).
Google Scholar
Blondel, J. & Aronson, J. Biology and Wildlife of the Mediterranean Region (Oxford Univ. Press, 1999).
Fall, P. L., Falconer, S. E. & Lines, L. Agricultural intensification and the secondary products revolution along the Jordan Rift. Hum. Ecol. 30, 445–482 (2002).
Google Scholar
Terral, J.-F. et al. Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. J. Biogeogr. 31, 63–77 (2004).
Google Scholar
Chartzoulakis, K. Salinity and olive: growth, salt tolerance, photosynthesis and yield. Agric. Water Manag. 78, 108–121 (2005).
Google Scholar
Vossen, P. Olive oil: history, production, and characteristics of the world’s classic oils. HortScience 42, 1093–1100 (2007).
Google Scholar
Kaniewski, D. et al. Primary domestication and early uses of the emblematic olive tree: palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. 87, 885–899 (2012).
Google Scholar
Langgut, D. et al. The origin and spread of olive cultivation in the Mediterranean Basin: the fossil pollen evidence. Holocene 29, 902–922 (2019).
Google Scholar
IPCC. AR5 Synthesis Report: Climate Change 2014 https://www.ipcc.ch/report/ar5/syr/ (IPCC, 2014).
IPCC. IPCC WGII Sixth Assessment Report. Cross-Chapter Paper 4: Mediterranean Region https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ (IPCC, 2022).
Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398–403 (2010).
Google Scholar
Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).
Google Scholar
Santos, J. A., Costa, R. & Fraga, H. Climate change impacts on thermal growing conditions of main fruit species in Portugal. Clim. Change 140, 273–286 (2017).
Google Scholar
Orlandi, F. et al. Impact of climate change on olive crop production in Italy. Atmosphere 11, 595 (2020).
Google Scholar
Rodríguez Sousa, A. A., Barandica, J. M., Aguilera, P. A. & Rescia, A. J. Examining potential environmental consequences of climate change and other driving forces on the sustainability of Spanish olive groves under a socio-ecological approach. Agriculture 10, 509 (2020).
Google Scholar
Besnard, G. et al. The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc. R. Soc. B 280, 20122833 (2013).
Google Scholar
Besnard, G., Terral, J. F. & Cornille, A. On the origins and domestication of the olive: a review and perspectives. Ann. Bot. 121, 385–403 (2018).
Google Scholar
Bartolini, G., Prevost, G., Messeri, C., Carignani, C. & Menini, U. G. Olive Germplasm: Cultivars and World-wide Collections (FAO, 1998).
Zohary, D. & Spiegel-Roy, P. Beginnings of fruit growing in the Old World. Science 187, 319–327 (1975).
Google Scholar
Terral, J.-F. Wild and cultivated olive (Olea europaea L.): a new approach to an old problem using inorganic analyses of modern wood and archaeological charcoal. Rev. Palaeobot. Palynol. 91, 383–397 (1996).
Google Scholar
Carrión, Y., Ntinou, M. & Badal, E. Olea europaea L. in the North Mediterranean basin during the Pleniglacial and the Early–Middle Holocene. Quat. Sci. Rev. 29, 952–968 (2010).
Google Scholar
Zohary, M. Plants of the Bible (Cambridge Univ. Press, 1982).
Galili, E., Weinstein-Evron, M. & Zohary, D. Appearance of olives in submerged Neolithic sites along the Carmel Coast. J. Isr. Plant Sci. 22, 95–97 (1989).
Galili, E., Stanley, D. J., Sharvit, J. & Weinstein-Evron, M. Evidence for earliest olive-oil production in submerged settlements off the Carmel Coast, Israel. J. Archaeol. Sci. 24, 1141–1150 (1997).
Google Scholar
Galili, E. et al. Early production of table olives at a mid-7th millennium BP submerged site off the Carmel Coast (Israel). Sci. Rep. 11, 2218 (2021).
Google Scholar
Fraga, H., Pinto, J. G., Viola, F. & Santos, J. A. Climate change projections for olive yields in the Mediterranean Basin. Int. J. Climatol. 40, 769–781 (2020).
Google Scholar
Ben Zaied, Y. & Zouabi, O. Impacts of climate change on Tunisian olive oil output. Clim. Change 139, 535–549 (2016).
Google Scholar
Brito, C., Dinis, L. T., Moutinho-Pereire, J. & Correia, C. M. Drought stress effects and olive tree acclimation under a changing climate. Plants 8, 232 (2019).
Google Scholar
Fraga, H., Moriondo, M., Leolini, L. & Santos, J. A. Mediterranean olive orchards under climate change: a review of future impacts and adaptation strategies. Agronomy 11, 56 (2021).
Google Scholar
Trærup, S. & Stephan, J. Technologies for adaptation to climate change. Examples from the agricultural and water sectors in Lebanon. Clim. Change 131, 435–449 (2015).
Google Scholar
Chalak, L. et al. Extent of the genetic diversity in Lebanese olive (Olea europaea L.) trees: a mixture of an ancient germplasm with recently introduced varieties. Genet. Resour. Crop. Evol. 62, 621–633 (2015).
Google Scholar
Bou-Zeid, E. & El-Fadel, M. Climate change and water resources in Lebanon and the Middle East. J. Water Resour. Plan. Manag. 128, 343–355 (2002).
Google Scholar
Ramadan, H. H., Beighley, R. E. & Ramamurthy, A. S. Sensitivity analysis of climate change impact on the hydrology of the Litani Basin in Lebanon. Int. J. Environ. Pollut. 52, 65–81 (2013).
Google Scholar
Saade, J., Atieh, M., Ghanimeh, S. & Golmohammadi, G. Modeling impact of climate change on surface water availability using SWAT model in a semi-arid basin: case of El Kalb River, Lebanon. Hydrology 8, 134 (2021).
Google Scholar
Halwani, J. & Halwani, B. in Climate Change in the Mediterranean and Middle Eastern Region (eds Filho, W. L. & Manolas, E.) 395–412 (Springer, 2022).
Aubet, M.E. in Nomads of the Mediterranean: Trade and Contact in the Bronze and Iron Ages (eds Gilboa, A. & Yasur-Landau, A.) 14–30 (Brill, 2020).
Bikai, P. M. The Pottery of Tyre (Aris & Phillips, 1979).
Hajar, L., Khater, C. & Cheddadi, R. Vegetation changes during the late Pleistocene and Holocene in Lebanon: a pollen record from the Bekaa Valley. Holocene 18, 1089–1099 (2008).
Google Scholar
Hajar, L., Haïdar-Boustani, M., Khater, C. & Cheddadi, R. Environmental changes in Lebanon during the Holocene: man vs. climate impacts. J. Arid. Environ. 74, 746–755 (2010).
Google Scholar
Cheddadi, R. & Khater, C. Climate change since the last glacial period in Lebanon and the persistence of Mediterranean species. Quat. Sci. Rev. 150, 146–157 (2016).
Google Scholar
Ozturk, M. et al. An overview of olive cultivation in Turkey: botanical features, eco-physiology and phytochemical aspects. Agronomy 11, 295 (2021).
Google Scholar
Lionello, P., Congedi, L., Reale, M., Scarascia, L. & Tanzarella, A. Sensitivity of typical Mediterranean crops to past and future evolution of seasonal temperature and precipitation in Apulia. Reg. Environ. Change 14, 2025–2038 (2014).
Google Scholar
Arenas-Castro, S., Gonçalves, J. F., Moreno, M. & Villar, R. Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Sci. Total Environ. 709, 136161 (2020).
Google Scholar
Mechri, B., Tekaya, M., Hammami, M. & Chehab, H. Effects of drought stress on phenolic accumulation in greenhouse-grown olive trees (Olea europaea). Biochem. Syst. Ecol. 92, 104112 (2020).
Google Scholar
Pedan, V., Popp, M., Rohn, S., Nyfeler, M. & Bongartz, A. Characterization of phenolic compounds and their contribution to sensory properties of olive oil. Molecules 24, 2041 (2019).
Google Scholar
Dias, M. C., Pinto, D. C. G. A., Figueiredo, C., Santos, C. & Silva, A. M. S. Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery. Phytochemistry 185, 112695 (2021).
Google Scholar
Peres, F. et al. Phenolic compounds of ‘Galega Vulgar’ and ‘Cobrançosa’ olive oils along early ripening stages. Food Chem. 211, 51–58 (2016).
Google Scholar
Tsimidou, M. Z. in Handbook of Olive Oil: Analysis and Properties (eds Aparicio, R. & Harwood, J.) 311–333 (Springer, 2013).
Valente, S. et al. Modulation of phenolic and lipophilic compounds of olive fruits in response to combined drought and heat. Food Chem. 329, 127191 (2020).
Google Scholar
WCRP. World Research Climate Program https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 (WCRP, 2022).
Rallo, L. et al. in Advances in Plant Breeding Strategies: Fruits (eds Al-Khayri, J. et al.) (Springer, 2018).
Abou-Saaid, O. et al. Statistical approach to assess chill and heat requirements of olive tree based on flowering date and temperatures data: towards selection of adapted cultivars to global warming. Agronomy 12, 2975 (2022).
Google Scholar
Faegri, K. & Iversen, I. Textbook of Pollen Analysis 4th edn. (Wiley, 1989).
Ferrara, G., Camposeo, S., Palasciano, M. & Godini, A. Production of total and stainable pollen grains in Olea europaea L. Grana 46, 85–90 (2007).
Google Scholar
Kaniewski, D. et al. Wild or cultivated Olea europaea L. in the eastern Mediterranean during the Middle–Late Holocene? A pollen-numerical approach. Holocene 19, 1039–1047 (2009).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).
Hammer, O. & Harper, D. Paleontological Data Analysis (Blackwell, 2006).
Cheddadi, R. et al. Microrefugia, climate change, and conservation of Cedrus atlantica in the Rif Mountains, Morocco. Front. Ecol. Evol. 5, 114 (2017).
Google Scholar
Kaniewski, D. et al. Cold and dry outbreaks in the eastern Mediterranean 3200 years ago. Geology 47, 933–937 (2019).
Google Scholar
Kaniewski, D. et al. Recent anthropogenic climate change exceeds the rate and magnitude of natural Holocene variability on the Balearic Islands. Anthropocene 32, 100268 (2020).
Google Scholar
Kaniewski, D. et al. Coastal submersions in the north-eastern Adriatic during the last 5200 years. Glob. Planet. Change 204, 103570 (2021).
Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
Akima, H. & Gebhardt, A. Akima: Interpolation of Irregularly and Regularly Spaced Data. R v.0.6-2 (R Foundation for Statistical Computing, 2016).
Ooms, J. D., Debroy, S., Wickham, H. & Horner, J. RMySQL: Database Interface and ‘MySQL’ Driver for R. R v.0.10.18 (R Foundation for Statistical Computing, 2019).
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
Google Scholar
Source: Ecology - nature.com