in

Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments

[adace-ad id="91168"]
  • Mohn WW, Mertens B, Neufeld JD, Verstraete W, de Lorenzo V. Distribution and phylogeny of hexachlorocyclohexane-degrading bacteria in soils from Spain. Environ Microbiol. 2006;8:60–8.

    CAS 

    Google Scholar 

  • Sharma P, Raina V, Kumari R, Malhotra S, Dogra C, Kumari H, et al. Haloalkane Dehalogenase LinB is responsible for β- and δ-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol. 2006;72:5720–7.

    CAS 

    Google Scholar 

  • Lal R, Dogra C, Malhotra S, Sharma P, Pal R. Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends Biotechnol. 2006;24:121–30.

    CAS 

    Google Scholar 

  • Singh A, Lal R. Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol. 2009;59:162–6.

    CAS 

    Google Scholar 

  • Singh BK, Kuhad RC. Biodegradation of lindane (γ-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol. 1999;28:238–41.

    CAS 

    Google Scholar 

  • Kumar D, Pannu R. Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: a review. Bioresour Bioprocess. 2018;5:29.

    CAS 

    Google Scholar 

  • Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, et al. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev. 2010;74:58–80.

    CAS 

    Google Scholar 

  • Nayyar N, Lal R. Hexachlorocyclohexane contamination and solutions: Brief history and beyond. J Bioremed Biodeg. 2016;07:338.

  • Bumpus JA, Tien M, Wright D, Aust SD. Oxidation of persistent environmental pollutants by a white rot fungus. Science. 1985;228:1434–6.

    CAS 

    Google Scholar 

  • Phillips TM, Seech AG, Lee H, Trevors JT. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegr. 2005;16:363–92.

    CAS 

    Google Scholar 

  • Dogra C, Raina V, Pal R, Suar M, Lal S, Gartemann KH, et al. Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis: Evidence for horizontal gene transfer. J Bacteriol. 2004;186:2225–35.

    CAS 

    Google Scholar 

  • Pal R, Bala S, Dadhwal M, Kumar M, Dhingra G, Prakash O, et al. Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol. 2005;55:1965–72.

    CAS 

    Google Scholar 

  • Rijnaarts HHM, Bachmann A, Jumelet JC, Zehnder AJB. Effect of desorption and intraparticle mass transfer on the aerobic biomineralization of. alpha-hexachlorocyclohexane in a contaminated calcareous soil. Environ Sci Technol. 1990;24:1349–54.

    CAS 

    Google Scholar 

  • Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011;9:177–92.

    CAS 

    Google Scholar 

  • Wick LY Bioavailability as a microbial system property: Lessons learned from biodegradation in the mycosphere. In: Ortega-Calvo JJ, Parsons JR, (eds). Bioavailability of organic chemicals in soil and sediment. Cham: Springer International Publishing; 2020 p. 267–89.

  • Jennings DH. Translocation of Solutes in fungi. Biol Rev. 1987;62:215–43.

    CAS 

    Google Scholar 

  • Nazir R, Warmink JA, Boersma H, van Elsas JD. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol. 2010;71:169–85.

    CAS 

    Google Scholar 

  • Worrich A, Stryhanyuk H, Musat N, König S, Banitz T, Centler F, et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat Commun. 2017;8:15472.

    CAS 

    Google Scholar 

  • Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52.

    CAS 

    Google Scholar 

  • Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY. Taking the fungal highway: Mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol. 2005;39:4640–6.

    CAS 

    Google Scholar 

  • Wick LY, Furuno S, Harms H Fungi as transport vectors for contaminants and contaminant-degrading bacteria. In: Timmis KN, (eds). Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 1555–61.

  • Espinosa-Ortiz EJ, Rene ER, Gerlach R. Potential use of fungal-bacterial co-cultures for the removal of organic pollutants. Crit Rev Biotechnol. 2021;0:1–23.

    Google Scholar 

  • Haq IU, Zhang M, Yang P, van Elsas JD The interactions of bacteria with fungi in soil. In: Adv Appl Microbiol. Elsevier; 2014. p. 185–215.

  • Furuno S, Foss S, Wild E, Jones KC, Semple KT, Harms H, et al. Mycelia promote active transport and spatial dispersion of polycyclic aromatic hydrocarbons. Environ Sci Technol. 2012;46:5463–70.

    CAS 

    Google Scholar 

  • Schamfuß S, Neu TR, van der Meer JR, Tecon R, Harms H, Wick LY. Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol. 2013;47:6908–15.

    Google Scholar 

  • Schamfuß S, Neu TR, Harms H, Wick LY. A Whole Cell Bioreporter approach to assess transport and bioavailability of organic contaminants in water unsaturated systems. J Vis Exp. 2014;24:52334.

    Google Scholar 

  • You X, Kallies R, Kühn I, Schmidt M, Harms H, Chatzinotas A, et al. Phage co-transport with hyphal-riding bacteria fuels bacterial invasion in a water-unsaturated microbial model system. ISME J. 2022;16:1275–83.

    CAS 

    Google Scholar 

  • Wick LY, Remer R, Würz B, Reichenbach J, Braun S, Schäfer F, et al. Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol. 2007;41:500–5.

    CAS 

    Google Scholar 

  • Boer W, de, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29:795–811.

    Google Scholar 

  • Frey‐Klett P, Garbaye J, Tarkka M. The mycorrhiza helper bacteria revisited. N. Phytol. 2007;176:22–36.

    Google Scholar 

  • Hazen TC Cometabolic Bioremediation. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer; 2010. p. 2505–14.

  • Jehmlich N, Vogt C, Lünsmann V, Richnow HH, von Bergen M. Protein-SIP in environmental studies. Curr Opin Biotechnol. 2016;41:26–33.

    CAS 

    Google Scholar 

  • Sachsenberg T, Herbst FA, Taubert M, Kermer R, Jehmlich N, von Bergen M, et al. MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteome Res. 2015;14:619–27.

    CAS 

    Google Scholar 

  • Taubert M, Jehmlich N, Vogt C, Richnow HH, Schmidt F, von Bergen M, et al. Time resolved protein-based stable isotope probing (Protein-SIP) analysis allows quantification of induced proteins in substrate shift experiments. Proteomics 2011;11:2265–74.

    CAS 

    Google Scholar 

  • Lünsmann V, Kappelmeyer U, Benndorf R, Martinez-Lavanchy PM, Taubert A, Adrian L, et al. In situ protein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model: Protein-SIP in a toluene-degrading wetland. Environ Microbiol. 2016;18:1176–86.

    Google Scholar 

  • Khan N, Toscan RB, Lunayo A, Wamalwa B, Muge E, Mulaa FJ, et al. Draft genome sequence of Fusarium equiseti K3, a fungal species isolated from hexachlorocyclohexane-contaminated soil. Microbiol Resour Announc. 2021;10:e00885–21.

    CAS 

    Google Scholar 

  • Khan N, Brizola Toscan R, Lunayo A, Wamalwa B, Muge E, Mulaa FJ, et al. Draft genome sequences of two Sphingobium species associated with hexachlorocyclohexane (HCH) degradation isolated from an HCH-Contaminated Soil. Microbiol Resour Announc. 2022;11:e00886–21.

    Google Scholar 

  • Yang CH, Menge JA, Cooksey DA. Mutations Affecting Hyphal Colonization and Pyoverdine Production in Pseudomonads Antagonistic toward Phytophthora parasitica. Appl Environ Microbiol. 1994;9:473–81.

  • Senoo K, Wada H. Isolation and identification of an aerobic γ-HCH-decomposing bacterium from soil. Soil Sci Plant Nutr. 1989;35:79–87.

    CAS 

    Google Scholar 

  • Jehmlich N, Schmidt F, Taubert M, Seifert J, Bastida F, von Bergen M, et al. Protein-based stable isotope probing. Nat Protoc. 2010;5:1957–66.

    CAS 

    Google Scholar 

  • Graves S, Dorai-Raj HPP and LS with help from S. multcompView: Visualizations of paired comparisons. 2019. Available from: https://CRAN.R-project.org/package=multcompView

  • Wickham H, François R, Henry L, Müller K, RStudio. dplyr: A Grammar of data manipulation. 2022. Available from: https://CRAN.R-project.org/package=dplyr

  • ggplot2: Create elegant data visualisations using the grammar of graphics—ggplot2-package. Available from: https://ggplot2.tidyverse.org/reference/ggplot2-package.html

  • Schramm FD, Heinrich K, Thüring M, Bernhardt J, Jonas K. An essential regulatory function of the DnaK chaperone dictates the decision between proliferation and maintenance in Caulobacter crescentus. PLoS Genet. 2017;13:e1007148.

    Google Scholar 

  • Li SX, Wu HT, Liu YT, Jiang YY, Zhang YS, Liu WD, et al. The F1Fo-ATP synthase β subunit is required for Candida albicans pathogenicity due to its role in carbon flexibility. Front Microbiol. 2018;9:1025.

    Google Scholar 

  • Godlewska R, Wiśniewska K, Pietras Z, Jagusztyn-Krynicka EK. Peptidoglycan-associated lipoprotein (Pal) of Gram-negative bacteria: function, structure, role in pathogenesis and potential application in immunoprophylaxis. FEMS Microbiol Lett. 2009;298:1–11.

    CAS 

    Google Scholar 

  • Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H, et al. Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J. 2012;6:2291–301.

    CAS 

    Google Scholar 

  • Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J. Rules of engagement: Interspecies interactions that regulate microbial communities. Annu Rev Microbiol. 2008;62:375–401.

    CAS 

    Google Scholar 

  • Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev. 2013;37:384–406.

    CAS 

    Google Scholar 

  • Van Hees PAW, Rosling A, Essén S, Godbold DL, Jones DL, Finlay RD. Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. N Phytol. 2006;169:367–78.

    Google Scholar 

  • Sun YP, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay R. Exudation-reabsorption in a mycorrhizal fungus, the dynamic interface for interaction with soil and soil microorganisms. Mycorrhiza 1999;9:137–44.

    CAS 

    Google Scholar 

  • Leveau JHJ, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. N Phytol. 2008;177:859–76.

    Google Scholar 

  • Bassler BL, Losick R. Bacterially speaking. Cell 2006;125:237–46.

    CAS 

    Google Scholar 

  • Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF. Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci. 2008;105:18188–93.

    CAS 

    Google Scholar 

  • Nayyar N, Sangwan N, Kohli P, Verma H, Kumar R, Negi V, et al. Hexachlorocyclohexane: persistence, toxicity and decontamination. Rev Environ Health. 2014;29:49–52.

    CAS 

    Google Scholar 

  • Willett KL, Ulrich EM, Hites RA. Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol. 1998;32:2197–207.

    CAS 

    Google Scholar 

  • Ellegaard-Jensen L, Knudsen BE, Johansen A, Albers CN, Aamand J, Rosendahl S. Fungal-bacterial consortia increase diuron degradation in water-unsaturated systems. Sci Total Environ. 2014;466–467:699–705.

    Google Scholar 

  • Knudsen BE, Ellegaard-Jensen L, Albers CN, Rosendahl S, Aamand J. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM). Environ Pollut. 2013;181:122–7.

    CAS 

    Google Scholar 

  • Saez JM, Alvarez A, Fuentes MS, Amoroso MJ, Benimeli CS An Overview on Microbial Degradation of Lindane. In: Singh SN, (eds). Microbe-induced degradation of pesticides. Cham: Springer International Publishing; 2017. p. 191–212.

  • Nzila A. Update on the cometabolism of organic pollutants by bacteria. Environ Pollut. 2013;178:474–82.

    CAS 

    Google Scholar 

  • Benimeli CS, González AJ, Chaile AP, Amoroso MJ. Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract. J Basic Microbiol. 2007;47:468–73.

    CAS 

    Google Scholar 

  • Álvarez A, Yañez ML, Benimeli CS, Amoroso MJ. Maize plants (Zea mays) root exudates enhance lindane removal by native Streptomyces strains. Int Biodeterior Biodegrad. 2012;66:14–8.

    Google Scholar 

  • Boltner D, Moreno-Morillas S, Ramos JL. 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol. 2005;7:1329–38.

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Polydimethylsiloxane-coated textiles with minimized microplastic pollution

    Quantitative dose-response analysis untangles host bottlenecks to enteric infection