in

Timely sown maize hybrids improve the post-anthesis dry matter accumulation, nutrient acquisition and crop productivity

  • Srivastava, R. K., Mequanint, F., Chakraborty, A., Panda, R. K. & Halder, D. Augmentation of maize yield by strategic adaptation to cope with climate change for a future period in Eastern India. J. Clean. Prod. 339, 130599 (2022).

    Google Scholar 

  • Pooniya, V. et al. Six years of conservation agriculture and nutrient management in maize–mustard rotation: Impact on soil properties, system productivity and profitability. Field Crops Res. 260, 108002 (2021).

    Google Scholar 

  • Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize grain yields and yield components. Field Crops Res. 150, 135–144 (2013).

    Google Scholar 

  • Maresma, A., Ballesta, A., Santiveri, F. & Lloveras, J. Sowing date affects maize development and yield in irrigated mediterranean environments. Agriculture 9(3), 67 (2019).

    Google Scholar 

  • Srivastava, R. K., Panda, R. K., Chakraborty, A. & Halder, D. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crops Res. 221, 339–349 (2018).

    Google Scholar 

  • Van Roekel, R. J. & Coulter, J. A. Agronomic responses of corn hybrids to row width and plant density. Agronomy J. 104(3), 612–620 (2012).

    Google Scholar 

  • Santiveri, F., Royo, C. & Romagosa, I. Growth and yield responses of spring and winter triticale cultivated under Mediterranean conditions. Eur. J. Agron. 20(3), 281–292 (2004).

    Google Scholar 

  • Masoni, A., Ercoli, L., Mariotti, M. & Arduini, I. Post-anthesis accumulation and remobilization of dry matter, nitrogen and phosphorus in durum wheat as affected by soil type. Eur. J. Agron. 26(3), 179–186 (2007).

    CAS 

    Google Scholar 

  • Yang, W., Peng, S., Dionisio-Sese, M. L., Laza, R. C. & Visperas, R. M. Grain filling duration, a crucial determinant of genotypic variation of grain yield in field-grown tropical irrigated rice. Field Crops Res. 105, 221–227 (2008).

    Google Scholar 

  • Wei, H. et al. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids, indica hybrids, and japonica conventional varieties. Field Crops Res. 204, 101–109 (2017).

    Google Scholar 

  • Wu, H. et al. Effects of post-anthesis nitrogen uptake and translocation on photosynthetic production and rice yield. Sci. Rep. 8(1), 1–11 (2018).

    ADS 

    Google Scholar 

  • Laza, M. R., Peng, S., Akita, S. & Saka, H. Contribution of biomass partitioning and translocation to grain yield under sub-optimum growing conditions in irrigated rice. Plant Prod. Sci. 6(1), 28–35 (2003).

    Google Scholar 

  • Gao, H. et al. Intercropping modulates the accumulation and translocation of dry matter and nitrogen in maize and peanut. Field Crops Res. 284, 108561 (2022).

    Google Scholar 

  • Yang, Y. et al. Solar radiation effects on dry matter accumulations and transfer in maize. Front. Plant Sci. 12, 1927 (2021).

    Google Scholar 

  • Jamshidi, A. & Javanmard, H. R. Evaluation of barley (Hordeum vulgare L.) genotypes for salinity tolerance under field conditions using the stress indices. Ain Shams Eng. J. 9(4), 2093–2099 (2018).

    Google Scholar 

  • Tyagi, B. S. et al. Identification of wheat cultivars for low nitrogen tolerance using multivariable screening approaches. Agronomy 10(3), 417 (2020).

    CAS 

    Google Scholar 

  • Fischer, R. A. & Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 29(5), 897–912 (1978).

    Google Scholar 

  • Fernandez, G. C. Effective selection criteria for assessing plant stress tolerance. In Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13–16, Shanhua, Taiwan. 257–270 (1992).

  • Bouslama, M. & Schapaugh, W. T. Jr. Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop sci. 24(5), 933–937 (1984).

    Google Scholar 

  • Ciampitti, I. A. & Vyn, T. J. Grain nitrogen source changes over time in maize: A review. Crop Sci. 53(2), 366–377 (2013).

    CAS 

    Google Scholar 

  • Chen, Y. et al. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crops Res. 159, 1–9 (2014).

    Google Scholar 

  • Mi, G. et al. Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence. J. plant nutr. 26(1), 237–247 (2003).

    CAS 

    Google Scholar 

  • Tollenaar, M. & Lee, E. A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica 51(2), 399 (2006).

    Google Scholar 

  • Samonte, S. O. P. et al. Nitrogen utilization efficiency: Relationships with grain yield, grain protein, and yield-related traits in rice. Agronomy J. 98(1), 168–176 (2006).

    CAS 

    Google Scholar 

  • Qiao, J., Yang, L., Yan, T., Xue, F. & Zhao, D. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agric. Ecosyst. Environ. 146(1), 103–112 (2012).

    CAS 

    Google Scholar 

  • Marschner, P. Marschner’s Mineral Nutrition of Higher Plants 3rd edn. (Academic Press, 2012).

    Google Scholar 

  • Ning, P., Li, S., Yu, P., Zhang, Y. & Li, C. Post-silking accumulation and partitioning of dry matter, nitrogen, phosphorus and potassium in maize varieties differing in leaf longevity. Field Crops Res. 144, 19–27 (2013).

    Google Scholar 

  • Hawkesford, M. et al. Functions of macronutrients. In Marschners Mineral Nutrition of Higher Plants 3rd edn (ed. Marschner, P.) 178–189 (Academic Press, 2012).

    Google Scholar 

  • Palta, J. A. et al. Large root systems: Are they useful in adapting wheat to dry environments?. Funct. Plant Biol. 38(5), 347–354 (2011).

    Google Scholar 

  • Pooniya, V., Palta, J. A., Chen, Y., Delhaize, E. & Siddique, K. H. Impact of the TaMATE1B gene on above and below-ground growth of durum wheat grown on an acid and Al3+-toxic soil. Plant Soil 447(1), 73–84 (2020).

    CAS 

    Google Scholar 

  • Bonelli, L. E., Monzon, J. P., Cerrudo, A., Rizzalli, R. H. & Andrade, F. H. Maize grain yield components and source-sink relationship as affected by the delay in sowing date. Field Crops Res. 198, 215–225 (2016).

    Google Scholar 

  • Sorensen, I., Stone, P. & Rogers, B. Effect of sowing time on yield of a short and a long season maize hybrid. Proc. Agron. Soc. NZ 30, 63–66 (2000).

    Google Scholar 

  • Tsimba, R., Edmeades, G. O., Millner, J. P. & Kemp, P. D. The effect of planting date on maize: Phenology, thermal time durations and growth rates in a cool temperate climate. Field Crops Res. 150, 145–155 (2013).

    Google Scholar 

  • Zhou, B. et al. Maize kernel weight responses to sowing date-associated variation in weather conditions. Crop J. 5(1), 43–51 (2017).

    Google Scholar 

  • Cirilo, A. G. & Andrade, F. H. Sowing date and maize productivity: I. Crop growth and dry matter partitioning. Crop Sci. 34(4), 1039–1043 (1994).

    Google Scholar 

  • Shi, Y. et al. Tillage practices affect dry matter accumulation and grain yield in winter wheat in the North China Plain. Soil Till. Res. 160, 73–81 (2016).

    Google Scholar 

  • He, P., Zhou, W. & Jin, J. Carbon and nitrogen metabolism related to grain formation in two different senescent types of maize. J. Plant Nutrit. 27(2), 295–311 (2004).

    CAS 

    Google Scholar 

  • Pommel, B. et al. Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence. Eur. J. Agron. 24(3), 203–211 (2006).

    CAS 

    Google Scholar 

  • Clarke, J. M., Campbell, C. A., Cutforth, H. W., DePauw, R. M. & Winkleman, G. E. Nitrogen and phosphorus uptake, translocation, and utilization efficiency of wheat in relation to environment and cultivar yield and protein levels. Can. J. Plant Sci. 70(4), 965–977 (1990).

    CAS 

    Google Scholar 

  • Mardeh, A. S. S., Ahmadi, A., Poustini, K. & Mohammadi, V. Evaluation of drought resistance indices under various environmental conditions. Field Crops Res. 98(2–3), 222–229 (2006).

    Google Scholar 

  • Naderi, A., Majidi-Harvan, E., Hashemi-Dezfoli, A., Rezaei, A. & Normohamadi, G. Analysis of efficiency of drought tolerance indices in crop plants and introduction of a new criteria. Seed Plant 15(4), 390–402 (1999).

    Google Scholar 

  • Zeng, W. et al. Comparative proteomics analysis of the seedling root response of drought-sensitive and drought-tolerant maize varieties to drought stress. Int. J. Mol. Sci. 20(11), 2793 (2019).

    CAS 

    Google Scholar 

  • Hajibabaei, M. & Azizi, F. Evaluation of drought tolerance indices in some new hybrids of corn. Electron. J. Crop Prod. 3, 139–155 (2011).

    Google Scholar 

  • Zhao, J. et al. Yield and water use of drought-tolerant maize hybrids in a semiarid environment. Field Crops Res. 216, 1–9 (2018).

    Google Scholar 

  • Fageria, N. K. Nitrogen harvest index and its association with crop yields. J. Plant Nutri. 37(6), 795–810 (2014).

    CAS 

    Google Scholar 

  • Raghuram, N., Sachdev, M. S. & Abrol, Y. P. Towards an integrative understanding of reactive nitrogen. In Agricultural Nitrogen Use & Its Environmental Implications (eds Abrol, Y. P. et al.) 1–6 (I.K. International Publishing House Pvt. Ltd., 2007).

    Google Scholar 

  • Baligar, V. C., Fageria, N. K. & He, Z. L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 32(7–8), 921–950 (2001).

    CAS 

    Google Scholar 

  • Foulkes, M. J. et al. Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Res. 114(3), 329–342 (2009).

    Google Scholar 

  • Gaju, O. et al. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res. 123(2), 139–152 (2011).

    Google Scholar 

  • Ehdaie, B. A. H. M. A. N., Mohammadi, S. A. & Nouraein, M. QTLs for root traits at mid-tillering and for root and shoot traits at maturity in a RIL population of spring bread wheat grown under well-watered conditions. Euphytica 211(1), 17–38 (2016).

    Google Scholar 

  • Piper, C. S. Soil and Plant Analysis (Adelaide University, 1950).

    Google Scholar 

  • Subbiah, B. V. & Asija, G. L. A rapid method for the estimation of nitrogen in soil. Curr. Sci. 26, 259–260 (1956).

    Google Scholar 

  • Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soil by Extraction with Sodium Carbonate (USDA, 1954).

    Google Scholar 

  • Hanway, J. J. & Heidel, H. Soil Analysis Methods as used in Iowa State College Soil Testing Laboratory, Bulletin 57 (Iowa State College of Agriculture, 1952).

    Google Scholar 

  • Walkley, A. L. & Black, I. A. An examination of the Degtjareff method for determination of soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).

    ADS 
    CAS 

    Google Scholar 

  • Ntanos, D. A. & Koutroubas, S. D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 74, 93–101 (2002).

    Google Scholar 

  • Prasad, R., Shivay, Y. S., Kumar, D., & Sharma, S. N. Learning by doing exercises in soil fertility (A practical manual for soil fertility). Division of Agronomy, Indian Agricultural Research Institute, India, (2006).

  • Jiang, L. et al. Characterizing physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Res. 88, 239–250 (2004).

    Google Scholar 

  • Dai, X. et al. Managing the seeding rate to improve nitrogen-use efficiency of winter wheat. Field Crops Res. 154, 100–109 (2013).

    Google Scholar 

  • Liu, W. et al. Root growth, water and nitrogen use efficiencies in winter wheat under different irrigation and nitrogen regimes in North China Plain. Front. Plant Sci. 9, 1798 (2018).

    Google Scholar 

  • Gomez, K. A. & Gomez, A. A. Statistical Procedures for Agricultural Research 2nd edn, 180–209 (Wiley, 1984).

    Google Scholar 


  • Source: Ecology - nature.com

    First detection of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Ixodes ricinus ticks (Acari: Ixodidae) from multiple locations in Hungary

    Chess players face a tough foe: air pollution