in

Nocardiopsis changdeensis sp. nov., an endophytic actinomycete isolated from the roots of Eucommia ulmoides Oliv

  • Rainey FA, WardRainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Evol Microbiol. 1996;46:1088–92.

    CAS 

    Google Scholar 

  • Goodfellow M, Order XV Streptosporangiales ord. nov. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds), Bergey’s Manual of Systematic Bacteriology vol. 5, 2nd edn., Springer, New York, 2012, p. 1805.

  • Meyer J. Nocardiopsis, a new genus of the order Actinomycetales. Int J Sys Bacteriol. 1976;26:487–93.

    Article 

    Google Scholar 

  • Chen YG, Cui XL, Kroppenstedt RM, Stackebrandt E, Wen ML, et al. Nocardiopsis quinghaiensis sp. nov. isolated from saline soil in China. Int J Syst Evol Microbiol. 2008;58:699–705.

    Article 
    CAS 

    Google Scholar 

  • Chen YG, Zhang YQ, Tang SK, Liu ZX, Xu LH, et al. Nocardiopsis terrae sp. nov., a halophilic actinomycete isolated from saline soil. Antonie van Leeuwenhoek. 2010;98:31–8.

    Article 

    Google Scholar 

  • Pan HQ, Zhang DF, Li L, Jiang Z, Li WJ. Nocardiopsis oceani sp. nov. and nocardiopsis nanhaiensis sp. nov. actinomycetes isolated from marine sediment of the south china sea. Int J Syst Evol Microbiol. 2015;65:3384–91.

    Article 
    CAS 

    Google Scholar 

  • Akhwale JK, Göker M, Rohde M, Schumann P, Boga HI, et al. Nocardiopsis mwathae sp. nov., isolated from the haloalkaline Lake Elmenteita in the African Rift Valley. Antonie van Leeuwenhoek. 2016;109:421–30.

    Article 
    CAS 

    Google Scholar 

  • Schippers A. Nocardiopsis metallicus sp. nov. a metal-leaching actinomycete isolated from an alkaline slag dump. Int J Syst Evol Microbiol. 2002;52:2291–5.

    CAS 

    Google Scholar 

  • Devi AM, Nimaichand S, Hamidah I, Xiao-Tong Z, Bull AT, et al. Nocardiopsis deserti sp. nov. isolated from a high altitude atacama desert soil. Int J Syst Evol Microbiol. 2020;70:3210–8.

    Article 

    Google Scholar 

  • Hamedi J, Mohammadipanah F, Von JM, Potter G, Schumann P, et al. Nocardiopsis sinuspersici sp. nov. isolated from sandy rhizospheric soil. Int J Syst Evol Microbiol. 2010;60:2346–52.

    Article 
    CAS 

    Google Scholar 

  • Zhang YG, Lu XH, Ding YB, Zhou XK, Wan HF, et al. Nocardiopsis rhizosphaerae sp. nov., isolated from rhizosphere soil of Halocnermum strobilaceum (Pall.) Bieb. Int J Syst Evol Microbiol. 2016;66:5129–33.

    Article 
    CAS 

    Google Scholar 

  • Muangham S, Suksaard P, Mingma R, Matsumoto A, Takahashi Y, et al. Nocardiopsis sediminis sp. nov., isolated from mangrove sediment Free. Int J Syst Evol Microbiol. 2016;66:3835–40.

    Article 
    CAS 

    Google Scholar 

  • Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol. 2009;75:6176–86.

    Article 
    CAS 

    Google Scholar 

  • Sindhuphak W, Macdonald E. Head actinomycetoma caused by Nocardiopsis dassonvillei. Arch. Dermatol. 1985;121:1332–4.

    Article 
    CAS 

    Google Scholar 

  • Mordarska H, Zakrzewska-Czerwiñska J, Paściak M, Szponar B, Rowiñski S. Rare, suppurative pulmonary infection caused by Nocardiopsis dassonvillei recognized by glycolipid markers. FEMS Immunol Med Microbiol. 1998;21:47–55.

    Article 
    CAS 

    Google Scholar 

  • Bennur T, Kumar AR, Zinjarde SS, Javdekar V. Nocardiopsis species: a potential source of bioactive compounds. J Appl Microbiol. 2016;120:1–16.

    Article 
    CAS 

    Google Scholar 

  • Mo P, Yu YZ, Zhao JR, Gao J. Streptomyces xiangtanensis sp. nov., isolated from a manganese-contaminated soil. Antonie van Leeuwenhoek. 2017;110:297–304.

    Article 
    CAS 

    Google Scholar 

  • Atlas RM In: Parks LC (ed) Handbook of microbiological media. CRC Press, Boca Raton, 1993;pp: 666–72.

  • Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.

    Article 

    Google Scholar 

  • Ridgway R Color standards and color nomenclature. Ridgway, Washington, DC, 1912;pp: 1–43.

  • Ruan JS, Huang Y Rapid identification and systematics of Actinobacteria. Science Press, Beijing, China, 2011;pp: 72–7.

  • Xu LH, Li WJ, Liu ZH, Jiang CL Actinomycetes systematics: principles, methods and practices. Science Press, Beijing, China. 2007;pp: 40–53.

  • MIDI. Sherlock Microbial Identification System Operating Manual, Version 6.0. Newark DE: MIDI Inc. 2005;pp: 1–7.

  • Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.

    Article 
    CAS 

    Google Scholar 

  • Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol. 1970;20:435–43.

    Article 
    CAS 

    Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol. 1977;100:221–30.

    Article 
    CAS 

    Google Scholar 

  • Kroppenstedt RM Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, England, pp, 1985: 173–99.

  • Kates M Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier, 1986.

  • Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial systematics. Method Microbiol. 1988;19:161–207.

    Article 

    Google Scholar 

  • Lane, DJ 16S/23S rRNA sequencing. In: nucleic acid techniques in bacterial systematics. Stackebrandt E, Goodfellow M, eds., John Wiley and Sons, New York, NY, pp, 1991: 115–75.

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

    Article 
    CAS 

    Google Scholar 

  • Saitou N, Nei M. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol Biol Evol. 1987;4:406–25.

    CAS 

    Google Scholar 

  • Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.

    Article 
    CAS 

    Google Scholar 

  • Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol. 1971;20:406–16.

    Article 

    Google Scholar 

  • Kumar S, Stecher G, Tamura K. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.

    Article 
    CAS 

    Google Scholar 

  • Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.

    Article 

    Google Scholar 

  • Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365.

    Article 

    Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Stevens R, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:D206–214.

    Article 
    CAS 

    Google Scholar 

  • Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019;10:2182.

    Article 

    Google Scholar 

  • Richter M, Rosselló-Móra R, Ckner FOG, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2015;32:929–31.

    Article 

    Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:1–14.

    Article 

    Google Scholar 

  • Rodriguez RL, Gunturu S, Harvey WT, Rossello-Mora R, Tiedje JM, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomicand gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 2018;46:W282–W288.

    Article 

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O. International committee on systematic bacteriology. report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 1987;37:463–4.

    Article 

    Google Scholar 

  • Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Nat Acad Sci USA. 2009;106:19126–31.

    Article 
    CAS 

    Google Scholar 

  • Vincent L, Richard D, Olivier G. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32:2798–800.

    Article 

    Google Scholar 

  • Farris JS. Estimating phylogenetictrees from distance matrices. Am Nat. 1972;106:645–68.

    Article 

    Google Scholar 

  • Fang CY, Zhang JL, Pang HC, Li YY, Xin YH, et al. Nocardiopsis flavescens sp. nov., an actinomycete isolated from marine sediment. Int J Syst Evol Microbiol. 2011;61:2640–5.

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Rescuing small plastics from the waste stream

    Scenarios of land use and land cover change in the Colombian Amazon to evaluate alternative post-conflict pathways