in

Net loss of biomass predicted for tropical biomes in a changing climate

  • Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. 108, 9899–9904 (2011).

    Article 
    CAS 

    Google Scholar 

  • Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

    Article 
    CAS 

    Google Scholar 

  • Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).

    Article 
    CAS 

    Google Scholar 

  • Betts, R. A. et al. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol. 78, 157–175 (2004).

    Article 

    Google Scholar 

  • Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    Article 
    CAS 

    Google Scholar 

  • Rammig, A. et al. Estimating the risk of Amazonian forest dieback. N. Phytol. 187, 694–706 (2010).

    Article 
    CAS 

    Google Scholar 

  • Huntingford, C. et al. Towards quantifying uncertainty in predictions of Amazon ‘dieback’. Philos. Trans. R. Soc. B Biol. Sci. 363, 1857–1864 (2008).

    Article 

    Google Scholar 

  • Galbraith, D. et al. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. N. Phytol. 187, 647–665 (2010).

    Article 

    Google Scholar 

  • Kumar, D., Pfeiffer, M., Gaillard, C., Langan, L. & Scheiter, S. Climate change and elevated CO2 favor forest over savanna under different future scenarios in South Asia. Biogeosciences 18, 2957–2979 (2021).

    Article 
    CAS 

    Google Scholar 

  • Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).

    Article 
    CAS 

    Google Scholar 

  • Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).

    Article 
    CAS 

    Google Scholar 

  • Koch, A., Hubau, W. & Lewis, S. L. Earth system models are not capturing present-day tropical forest carbon dynamics. Earths Future 9, e2020EF001874 (2021).

    Article 
    CAS 

    Google Scholar 

  • Negrón-Juárez, R. I., Koven, C. D., Riley, W. J., Knox, R. G. & Chambers, J. Q. Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environ. Res. Lett. 10, 064017 (2015).

    Article 

    Google Scholar 

  • Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).

    Article 
    CAS 

    Google Scholar 

  • Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Article 
    CAS 

    Google Scholar 

  • Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. 106, 20610–20615 (2009).

    Article 
    CAS 

    Google Scholar 

  • Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S. & Fisher, J. B. Changes in the potential distribution of humid tropical forests on a warmer planet. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369, 137–160 (2011).

    Google Scholar 

  • Huang, L. et al. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Sci. Rep. 6, 24639 (2016).

    Article 
    CAS 

    Google Scholar 

  • Castanho, A. D. A. et al. Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate. Environ. Res. Lett. 15, 034053 (2020).

    Article 

    Google Scholar 

  • Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): global datasets of forest above-ground biomass for the years 2010, 2017 and 2018, v3. NERC EDS Centre for Environmental Data Analysis https://doi.org/10.5285/5f331c418e9f4935b8eb1b836f8a91b8 (2021).

  • Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    Article 
    CAS 

    Google Scholar 

  • Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).

    Article 

    Google Scholar 

  • Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).

    Article 
    CAS 

    Google Scholar 

  • Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).

    Article 

    Google Scholar 

  • Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article 
    CAS 

    Google Scholar 

  • Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article 
    CAS 

    Google Scholar 

  • Phillips, O. L. et al. Drought sensitivity of the amazon rainforest. Science 323, 1344–1347 (2009).

    Article 
    CAS 

    Google Scholar 

  • Ross, C. W. et al. Woody-biomass projections and drivers of change in sub-Saharan Africa. Nat. Clim. Change 11, 449–455 (2021).

    Article 

    Google Scholar 

  • Larjavaara, M., Lu, X., Chen, X. & Vastaranta, M. Impact of rising temperatures on the biomass of humid old-growth forests of the world. Carbon Balance Manag. 16, 31 (2021).

    Article 

    Google Scholar 

  • Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).

    Article 
    CAS 

    Google Scholar 

  • Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutierrez, C. & Yanoviak, S. P. The contributions of lightning to biomass turnover, gap formation and plant mortality in a tropical forest. Ecology 102, e03541 (2021).

    Article 

    Google Scholar 

  • Magnabosco Marra, D. et al. Windthrows control biomass patterns and functional composition of Amazon forests. Glob. Change Biol. 24, 5867–5881 (2018).

    Article 

    Google Scholar 

  • Negrón-Juárez, R. I. et al. Windthrow variability in central amazonia. Atmosphere 8, 28 (2017).

    Article 

    Google Scholar 

  • Silva Junior, C. H. L. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, 40 (2020).

    Article 

    Google Scholar 

  • Yin, Y. et al. Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nat. Commun. 11, 1900 (2020).

    Article 
    CAS 

    Google Scholar 

  • Koch, A. & Kaplan, J. O. Tropical forest restoration under future climate change. Nat. Clim. Change 12, 279–283 (2022).

    Article 

    Google Scholar 

  • Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article 
    CAS 

    Google Scholar 

  • Case, M. F. & Staver, A. C. Fire prevents woody encroachment only at higher-than-historical frequencies in a South African savanna. J. Appl. Ecol. 54, 955–962 (2017).

    Article 
    CAS 

    Google Scholar 

  • Mau, A. C., Reed, S. C., Wood, T. E. & Cavaleri, M. A. Temperate and tropical forest canopies are already functioning beyond their thermal thresholds for photosynthesis. Forests 9, 47 (2018).

    Article 

    Google Scholar 

  • Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article 
    CAS 

    Google Scholar 

  • Martens, C. et al. Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Glob. Change Biol. 27, 340–358 (2021).

    Article 
    CAS 

    Google Scholar 

  • Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold?. J. Geophys. Res. Biogeosciences 113, G00B07 (2008).

    Article 

    Google Scholar 

  • Doughty, C. E. & Goulden, M. L. Seasonal patterns of tropical forest leaf area index and CO2 exchange. J. Geophys. Res. Biogeosciences 113, G00B06 (2008).

    Article 

    Google Scholar 

  • Langenbrunner, B., Pritchard, M. S., Kooperman, G. J. & Randerson, J. T. Why does amazon precipitation decrease when tropical forests respond to increasing CO2? Earths Future 7, 450–468 (2019).

    Article 

    Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 

    Google Scholar 

  • Maurer, E. P., Brekke, L., Pruitt, T. & Duffy, P. B. Fine-resolution climate projections enhance regional climate change impact studies. EOS Trans. Am. Geophys. Union 88, 504–504 (2007).

    Article 

    Google Scholar 

  • Reclamation. Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with preceding Information, and Summary of User Needs. https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/BCSD5HydrologyMemo.pdf (2014).

  • Silva de Miranda, P. L. et al. Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America. Glob. Ecol. Biogeogr. 27, 899–912 (2018).

    Article 

    Google Scholar 

  • Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).

    Article 

    Google Scholar 

  • Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).

    Article 

    Google Scholar 

  • Middleton, N., Thomas, D. & UNEP. World Atlas of Desertification (Arnold, 1997).

  • Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of Savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    Article 
    CAS 

    Google Scholar 

  • ESRI Data & Maps. World Continents Version 10.3. (2015).

  • Uribe, M. R. et al. Net loss of biomass predicted for tropical biomes in a changing climate. Dryad https://doi.org/10.7280/D1D124 (2023).


  • Source: Ecology - nature.com

    Rescuing small plastics from the waste stream

    Scenarios of land use and land cover change in the Colombian Amazon to evaluate alternative post-conflict pathways