in

Upwelling, climate change, and the shifting geography of coral reef development

  • Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918. https://doi.org/10.1016/j.cub.2013.04.020 (2013).

    Article 
    CAS 

    Google Scholar 

  • Beck, M. W. et al. The global flood protection savings provided by coral reefs. Nat. Commun. 9, 2186. https://doi.org/10.1038/s41467-018-04568-z (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kuffner, I. B. & Toth, L. T. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 30, 706–715. https://doi.org/10.1111/cobi.12725 (2016).

    Article 

    Google Scholar 

  • Allemand, D. et al. Biomineralisation in reef-building corals: From molecular mechanisms to environmental control. C. R. Palevol. 3, 453–467. https://doi.org/10.1016/j.crpv.2004.07.011 (2004).

    Article 

    Google Scholar 

  • Glynn, P. W. Bioerosion and coral-reef growth: A dynamic balance. In Life and Death of Coral Reefs (ed Birkeland, C.) 68–95 (Chapman & Hall, 1997).

  • Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976. https://doi.org/10.1038/nclimate2380 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Enochs, I. C. et al. Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific. Ecol. Monogr. 91, e01482. https://doi.org/10.1002/ecm.1482 (2021).

    Article 
    CAS 

    Google Scholar 

  • Alvarado, J. J., Grassian, B., Cantera-Kintz, J. R., Carballo, J. L. & Londoño-Cruz, E. Coral reef bioerosion in the eastern tropical Pacific. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 369–403 (Springer, 2017).

  • Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4, 1402. https://doi.org/10.1038/ncomms2409 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Oppenheimer, M. et al. Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).

  • Alvarez-Filip, L., González-Barrios, F. J., Pérez-Cervantes, E., Molina-Hernández, A. & Estrada-Saldívar, N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun. Biol. 5, 440. https://doi.org/10.1038/s42003-022-03398-6 (2022).

    Article 

    Google Scholar 

  • Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400. https://doi.org/10.1038/s41586-018-0194-z (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • van Woesik, R. & Cacciapaglia, C. W. Carbonate production of Micronesian reefs suppressed by thermal anomalies and Acanthaster as sea-level rises. PLoS ONE 14, e0224887. https://doi.org/10.1371/journal.pone.0224887 (2019).

    Article 
    CAS 

    Google Scholar 

  • van Woesik, R. & Cacciapaglia, C. W. Thermal stress jeopardizes carbonate production of coral reefs across the western and central Pacific Ocean. PLoS ONE 16, e0249008. https://doi.org/10.1371/journal.pone.0249008 (2021).

    Article 
    CAS 

    Google Scholar 

  • van Woesik, R. & Cacciapaglia, C. W. Keeping up with sea-level rise: Carbonate production rates in Palau and Yap, western Pacific Ocean. PLoS ONE 13, e0197077. https://doi.org/10.1371/journal.pone.0197077 (2018).

    Article 
    CAS 

    Google Scholar 

  • Eakin, C. M. Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–1983 El Niño at Uva Island in the eastern Pacific. Coral Reefs 15, 109–119. https://doi.org/10.1007/BF01771900 (1996).

    Article 
    ADS 

    Google Scholar 

  • Perry, C. T. & Morgan, K. M. Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs. Sci. Rep. 7, 40581. https://doi.org/10.1038/srep40581 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Connell, J. H. Disturbance and recovery of coral assemblages. Coral Reefs 16, S101–S113. https://doi.org/10.1007/s003380050246 (1997).

    Article 

    Google Scholar 

  • Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83. https://doi.org/10.1126/science.aan8048 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dana, T. F. Development of contemporary eastern Pacific coral reefs. Mar. Biol. 33, 355–374. https://doi.org/10.1007/BF00390574 (1975).

    Article 

    Google Scholar 

  • Cortés, J. Eastern tropical Pacific coral reefs. In The Encyclopedia of Modern Coral Reefs: Structure, Form and Process. 351–358 (2011).

  • O’Dea, A., Hoyos, N., Rodríguez, F., Degracia, B. & de Gracia, C. History of upwelling in the tropical eastern Pacific and the paleogeography of the Isthmus of Panama. Palaeogeogr. Palaeoclimatol. Palaeoecol. 348–349, 59–66. https://doi.org/10.1016/j.palaeo.2012.06.007 (2012).

    Article 

    Google Scholar 

  • Glynn, P. W. & Colgan, M. W. Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the Eastern Pacific. Am. Zool. 32, 707–718. https://doi.org/10.1093/icb/32.6.707 (1992).

    Article 

    Google Scholar 

  • Manzello, D. P. et al. Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world. Proc. Natl. Acad. Sci. USA 105, 10450–10455. https://doi.org/10.1073/pnas.0712167105 (2008).

    Article 
    ADS 

    Google Scholar 

  • Eakin, C. M. & Glynn, P. W. Low tidal exposures and reef mortalities in the eastern Pacific. Coral Reefs 15, 120 (1996).

    Article 

    Google Scholar 

  • Glynn, P. W. Some physical and biological determinants of coral community structure in the eastern pacific. Ecol. Monogr. 46, 431–456. https://doi.org/10.2307/1942565 (1976).

    Article 

    Google Scholar 

  • Toth, L. T., Macintyre, I. G. & Aronson, R. B. Holocene reef development in the eastern tropical Pacific. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 177–201 (Springer, 2017).

  • Cortés, J., Macintyre, I. G. & Glynn, P. W. Holocene growth history of an eastern Pacific fringing reef, Punta Islotes, Costa Rica. Coral Reefs 13, 65–73. https://doi.org/10.1007/BF00300763 (1994).

    Article 
    ADS 

    Google Scholar 

  • Glynn, P. W. et al. Eastern pacific coral reef provinces, coral community structure and composition: An overview. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 107–176 (Springer, 2017).

  • Glynn, P. W. & Macintyre, I. G. Growth rate and age of coral reefs on the Pacific coast of Panama. In Proceedings of the 3rd International Coral Reef Symposium, Miami, vol. 2, 251–259 (1977).

  • Glynn, P. W. & Stewart, R. H. Distribution of coral reefs in the Pearl Islands (Gulf of Panama) in relation to thermal conditions. Limnol. Oceanogr. 18, 367–379. https://doi.org/10.4319/lo.1973.18.3.0367 (1973).

    Article 
    ADS 

    Google Scholar 

  • Glynn, P. W., Druffel, E. M. & Dunbar, R. B. A dead Central American coral reef tract: Possible link with the Little Ice Age (Costa Rica, Gulf of Papagayo, Gulf of Panama). J. Mar. Res. 41, 605–637. https://doi.org/10.1357/002224083788519740 (1983).

    Article 

    Google Scholar 

  • Glynn, P. W. & Leyte Morales, G. E. Coral reefs of Huatulco, west México: Reef development in upwelling Gulf of Tehuantepec. Rev. Biol. Trop. 45, 1033–1047 (1997).

    Google Scholar 

  • Tribollet, A. & Golubic, S. Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24, 422–434. https://doi.org/10.1007/s00338-005-0003-7 (2005).

    Article 
    ADS 

    Google Scholar 

  • D’Croz, L. & O’Dea, A. Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuar. Coast. Shelf S. 73, 325–340. https://doi.org/10.1016/j.ecss.2007.01.013 (2007).

    Article 
    ADS 

    Google Scholar 

  • Randall, C. J., Toth, L. T., Leichter, J. J., Maté, J. L. & Aronson, R. B. Upwelling buffers climate change impacts on coral reefs of the eastern tropical Pacific. Ecology 101, e02918. https://doi.org/10.1002/ecy.2918 (2020).

    Article 

    Google Scholar 

  • Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281. https://doi.org/10.1111/j.1466-8238.2011.00656.x (2012).

    Article 

    Google Scholar 

  • Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284. https://doi.org/10.1111/geb.12693 (2018).

    Article 

    Google Scholar 

  • R Development Core Team. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R Foundation for Statistical Computing vol. 2.

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016). ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

  • Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. (2022). https://paleolimbot.github.io/ggspatial/, https://github.com/paleolimbot/ggspatial.

  • Toth, L. T. et al. ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 336, 81–84. https://doi.org/10.1126/science.1221168 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Toth, L. T. et al. Climatic and biotic thresholds of coral-reef shutdown. Nat. Clim. Change 5, 369–374. https://doi.org/10.1038/nclimate2541 (2015).

    Article 
    ADS 

    Google Scholar 

  • Guzman, H. & Cortés, J. Arrecifes coralinos del Pacífico oriental tropical: revisión y perspectivas. Rev. Biol. Trop. 41, 535–557 (1993).

    Google Scholar 

  • Chollett, I., Mumby, P. J. & Cortés, J. Upwelling areas do not guarantee refuge for coral reefs in a warming Ocean. Mar. Ecol. Prog. Ser. 416, 47–56. https://doi.org/10.3354/meps08775 (2010).

    Article 
    ADS 

    Google Scholar 

  • Glynn, P. W., Maté, J. L., Baker, A. C. & Calderón, M. O. Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bull. Mar. Sci. 69, 79–109 (2001).

    Google Scholar 

  • Paz-García, D. A., Hellberg, M. E., García-de-León, F. J. & Balart, E. F. Switch between morphospecies of Pocillopora corals. Am. Nat. 186, 434–440. https://doi.org/10.1086/682363 (2015).

    Article 

    Google Scholar 

  • Tortolero-Langarica, J. J. A., Rodríguez-Troncoso, A. P., Cupul-Magaña, A. L. & Carricart-Ganivet, J. P. Calcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance. PeerJ 2017, e3191. https://doi.org/10.7717/peerj.3191 (2017).

    Article 

    Google Scholar 

  • Medellín-Maldonado, F. et al. Calcification of the main reef-building coral species on the Pacific coast of southern Mexico. Cienc. Mar. 42, 209–225. https://doi.org/10.7773/cm.v42i3.2650 (2016).

    Article 
    CAS 

    Google Scholar 

  • Cabral-Tena, R. A. et al. Calcification of coral assemblages in the eastern Pacific: Reshuffling calcification scenarios under climate change. Ecol. Indic. 95, 726–734. https://doi.org/10.1016/j.ecolind.2018.08.021 (2018).

    Article 
    CAS 

    Google Scholar 

  • Glynn, P. Coral growth in upwelling and nonupwelling areas off the Pacific coast of Panama. J. Mar. Res. 35, 567–585 (1977).

    Google Scholar 

  • Guzman, H. M. & Cortes, J. Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bull. Mar. Sci. 44, 1186–1194 (1989).

    Google Scholar 

  • Cabral-Tena, R. A. et al. Functional potential of coral assemblages along a typical eastern tropical Pacific reef tract. Ecol. Indic. 119, 106795. https://doi.org/10.1016/j.ecolind.2020.106795 (2020).

    Article 

    Google Scholar 

  • Manzello, D. P. Coral growth with thermal stress and ocean acidification: Lessons from the eastern tropical Pacific. Coral Reefs 29, 749–758. https://doi.org/10.1007/s00338-010-0623-4 (2010).

    Article 
    ADS 

    Google Scholar 

  • González-Barrios, F. J. & Álvarez-Filip, L. A framework for measuring coral species-specific contribution to reef functioning in the Caribbean. Ecol. Indic. 95, 877–886. https://doi.org/10.1016/j.ecolind.2018.08.038 (2018).

    Article 

    Google Scholar 

  • Jokiel, P. L., Maragos, J. & Franzisket, L. Coral growth: Buoyant weight technique. In Coral Reefs: Research Methods (eds Stoddart, D. R., & Johannes, R. E.) 529–541 (UNESCO, 1978).

  • Kuffner, I. B., Hickey, T. D. & Morrison, J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs 32, 987–997. https://doi.org/10.1007/s00338-013-1047-8 (2013).

    Article 
    ADS 

    Google Scholar 

  • Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. USA 118, e2015265118. https://doi.org/10.1073/pnas.201526511 (2021).

    Article 
    CAS 

    Google Scholar 

  • Rose, C. S. & Risk, M. J. Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar. Ecol. 6, 345–363. https://doi.org/10.1111/j.1439-0485.1985.tb00142.x (1985).

    Article 
    ADS 

    Google Scholar 

  • Prouty, N. G. et al. Vulnerability of coral reefs to bioerosion from land-based sources of pollution. J. Geophys. Res-Oceans 122, 9319–9331. https://doi.org/10.1002/2017JC013264 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Eakin, C. M. The damselfish-algal lawn symbiosis and its influence on the bioerosion of an El Niño impacted coral reef, Uva Island, Pacific Panama. ProQuest Dissertations and Theses (1991).

  • Alvarado, J. J., Reyes-Bonilla, H. & Benítez-Villalobos, F. Diadema mexicanum, erizo de mar clave en los arrecifes coralinos del Pacífico Tropical Oriental: Lo que sabemos y perspectivas futuras (Diadematoida: Diadematidae). Rev. Biol. Trop. 63(Suppl 2), 135–157. https://doi.org/10.15517/rbt.v63i2.23140 (2015).

    Article 

    Google Scholar 

  • Glynn, P. W. Widespread coral mortality and the 1982–83 El Niño warming event. Environ. Conserv. 11, 133–146. https://doi.org/10.1017/S0376892900013825 (1984).

    Article 

    Google Scholar 

  • Glynn, P. W. El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7, 129–160 (1988).

    Google Scholar 

  • Eakin, C. M. A tale of two ENSO events: Carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull. Mar. Sci. 69, 171–186 (2001).

    ADS 

    Google Scholar 

  • Russ, G. R., Questel, S. L. A., Rizzari, J. R. & Alcala, A. C. The parrotfish–coral relationship: Refuting the ubiquity of a prevailing paradigm. Mar. Biol. 162, 2029–2045. https://doi.org/10.1007/s00227-015-2728-3 (2015).

    Article 

    Google Scholar 

  • Wellington, G. M. & Glynn, P. W. Responses of Coral Reefs to El Niño-Southern Oscillation Sea-Warming Events. In Geological Approaches to Coral Reef Ecology (ed Aronson, R. B.) 342–385 (Springer, 2007).

  • Guzmán, H. M. & Cortés, J. Changes in reef community structure after fifteen years of natural disturbances in the eastern Pacific (Costa Rica). Bull. Mar. Sci. 69, 133–149 (2001).

    Google Scholar 

  • Guzman, H. M. & Cortés, J. Reef recovery 20 years after the 1982–1983 El Niño massive mortality. Mar. Biol. 151, 401–411. https://doi.org/10.1007/s00227-006-0495-x (2007).

    Article 

    Google Scholar 

  • Edmunds, P. J. et al. Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar. Ecol. Prog. Ser. 608, 297–306. https://doi.org/10.3354/meps12805 (2019).

    Article 
    ADS 

    Google Scholar 

  • Enochs, I. C. et al. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Proc. R. Soc. B 283, 20161742. https://doi.org/10.1098/rspb.2016.1742 (2016).

    Article 
    CAS 

    Google Scholar 

  • Roff, G. Reef accretion and coral growth rates are decoupled in Holocene reef frameworks. Mar. Geol. 419, 106065. https://doi.org/10.1016/j.margeo.2019.106065 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Perry, C. T. et al. Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth. Glob. Change Biol. 21, 1153–1164. https://doi.org/10.1111/gcb.12792 (2015).

    Article 
    ADS 

    Google Scholar 

  • IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC (2014).

  • Neumann, A. C. & Macintyre, I. Reef response to sea level rise: Keep-up, catch-up or give up. In Proceedings 5th International Coral Reef Congress, Tahiti 3, 105–110 (1985).

  • Macintyre, I. G. Modern coral reefs of western Atlantic: New geological perspective. AAPG Bull. 72, 1360–1369. https://doi.org/10.1306/703C99A1-1707-11D7-8645000102C1865D (1988).

    Article 

    Google Scholar 

  • Hallock, P. & Schlager, W. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1, 389–398. https://doi.org/10.2307/3514476 (1986).

    Article 
    ADS 

    Google Scholar 

  • Kleypas, J. A. Coral reef development under naturally turbid conditions: Fringing reefs near Broad Sound, Australia. Coral Reefs 15, 153–167. https://doi.org/10.1007/BF01145886 (1996).

    Article 
    ADS 

    Google Scholar 

  • van Woesik, R. & Done, T. J. Coral communities and reef growth in the southern Great Barrier Reef. Coral Reefs 16, 103–115. https://doi.org/10.1007/s003380050064 (1997).

    Article 

    Google Scholar 

  • Sully, S. & van Woesik, R. Turbid reefs moderate coral bleaching under climate-related temperature stress. Glob. Change Biol. 26, 1367–1373. https://doi.org/10.1111/gcb.14948 (2020).

    Article 
    ADS 

    Google Scholar 

  • Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189. https://doi.org/10.1038/nature04565 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Romero-Torres, M. et al. Coral reef resilience to thermal stress in the eastern tropical Pacific. Glob. Change Biol. 26, 3880–3890. https://doi.org/10.1111/gcb.15126 (2020).

    Article 
    ADS 

    Google Scholar 

  • Martínez-Castillo, V., Rodríguez-Troncoso, A. P., Mayfield, A. B., Rodríguez-Zaragoza, F. A. & Cupul-Magaña, A. L. Coral recovery in the central Mexican Pacific 20 years after the 1997–1998 El Niño Event. Oceans 3, 48–59. https://doi.org/10.3390/oceans3010005 (2022).

    Article 

    Google Scholar 

  • Anton, A. et al. Differential thermal tolerance between algae and corals may trigger the proliferation of algae in coral reefs. Glob. Change Biol. 26, 4316–4327. https://doi.org/10.1111/gcb.15141 (2020).

    Article 
    ADS 

    Google Scholar 

  • Roth, F. et al. High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. Ecology 102, e03226. https://doi.org/10.1002/ecy.3226 (2021).

    Article 

    Google Scholar 

  • Roik, A., Röthig, T., Pogoreutz, C., Saderne, V. & Voolstra, C. R. Coral reef carbonate budgets and ecological drivers in the central Red Sea—A naturally high temperature and high total alkalinity environment. Biogeosciences 15, 6277–6296. https://doi.org/10.5194/bg-15-6277-2018 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34. https://doi.org/10.1038/s41561-019-0486-4 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Smith, T. B., Glynn, P. W., Maté, J. L., Toth, L. T. & Gyory, J. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95, 1663–1673. https://doi.org/10.1890/13-0468.1 (2014).

    Article 

    Google Scholar 

  • Guest, J. R. et al. A framework for identifying and characterising coral reef “oases” against a backdrop of degradation. J. Appl. Ecol. 55, 2865–2875. https://doi.org/10.1111/1365-2664.13179 (2018).

    Article 

    Google Scholar 

  • Courtney, T. A. et al. Disturbances drive changes in coral community assemblages and coral calcification capacity. Ecosphere 11, e03066. https://doi.org/10.1002/ecs2.3066 (2020).

    Article 

    Google Scholar 

  • Bachman, S. D., Kleypas, J. A., Erdmann, M. & Setyawan, E. A global atlas of potential thermal refugia for coral reefs generated by internal gravity waves. Front. Mar. Sci. 9, 1346. https://doi.org/10.3389/fmars.2022.921879 (2022).

    Article 

    Google Scholar 

  • Dixon, A. M., Forster, P. M., Heron, S. F., Stoner, A. M. & Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 1, e0000004. https://doi.org/10.1371/journal.pclm.0000004 (2022).

    Article 

    Google Scholar 

  • Kuffner, I. B., Stathakopoulos, A., Toth, L. T. & Bartlett, L. A. Reestablishing a stepping-stone population of the threatened elkhorn coral Acropora palmata to aid regional recovery. Endanger. Species Res. 43, 461–473. https://doi.org/10.3354/esr01083 (2020).

    Article 

    Google Scholar 

  • Perry, C. T., Lange, I. D. & Januchowski-Hartley, F. A. ReefBudget Indo Pacific: Online resource and methodology. http://geography.exeter.ac.uk/reefbudget/ (2018).

  • Nava, H. & Carballo, J. L. Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J. Exp. Biol. 211, 2827–2831. https://doi.org/10.1242/jeb.019216 (2008).

    Article 

    Google Scholar 

  • Carballo, J. L., Bautista, E., Nava, H., Cruz-Barraza, J. A. & Chávez, J. A. Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol. Evol. 3, 872–886. https://doi.org/10.1002/ece3.452 (2013).

    Article 

    Google Scholar 

  • Smith, T. B. Temperature effects on herbivory for an Indo-Pacific parrotfish in Panamá: Implications for coral-algal competition. Coral Reefs 27, 397–405. https://doi.org/10.1007/s00338-007-0343-6 (2008).

    Article 
    ADS 

    Google Scholar 

  • Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W. & Serafy, J. E. Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar. Ecol. Prog. Ser. 495, 233–247. https://doi.org/10.3354/meps10594 (2014).

    Article 
    ADS 

    Google Scholar 

  • Palacios, M. M., Muñoz, C. G. & Zapata, F. A. Fish corallivory on a pocilloporid reef and experimental coral responses to predation. Coral Reefs 33, 625–636. https://doi.org/10.1007/s00338-014-1173-y (2014).

    Article 
    ADS 

    Google Scholar 

  • Toth, L. T. Holocene Coral-Reef Development in the Tropical Eastern Pacific. (Florida Institute of Technology, 2013).

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. https://cran.r-project.org/package=nlme.R-project (2021).

  • Holgate, S. J. et al. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 29, 493–504. https://doi.org/10.2112/JCOASTRES-D-12-00175.1 (2013).

    Article 

    Google Scholar 

  • Permanent Service for Mean Sea Level. Balboa Tide Gauge Data. http://www.psmsl.org/data/obtaining/ (2022).


  • Source: Ecology - nature.com

    Looking for massive carbon capture

    A simple soil mass correction for a more accurate determination of soil carbon stock changes