Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918. https://doi.org/10.1016/j.cub.2013.04.020 (2013).
Google Scholar
Beck, M. W. et al. The global flood protection savings provided by coral reefs. Nat. Commun. 9, 2186. https://doi.org/10.1038/s41467-018-04568-z (2018).
Google Scholar
Kuffner, I. B. & Toth, L. T. A geological perspective on the degradation and conservation of western Atlantic coral reefs. Conserv. Biol. 30, 706–715. https://doi.org/10.1111/cobi.12725 (2016).
Google Scholar
Allemand, D. et al. Biomineralisation in reef-building corals: From molecular mechanisms to environmental control. C. R. Palevol. 3, 453–467. https://doi.org/10.1016/j.crpv.2004.07.011 (2004).
Google Scholar
Glynn, P. W. Bioerosion and coral-reef growth: A dynamic balance. In Life and Death of Coral Reefs (ed Birkeland, C.) 68–95 (Chapman & Hall, 1997).
Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976. https://doi.org/10.1038/nclimate2380 (2014).
Google Scholar
Enochs, I. C. et al. Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific. Ecol. Monogr. 91, e01482. https://doi.org/10.1002/ecm.1482 (2021).
Google Scholar
Alvarado, J. J., Grassian, B., Cantera-Kintz, J. R., Carballo, J. L. & Londoño-Cruz, E. Coral reef bioerosion in the eastern tropical Pacific. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 369–403 (Springer, 2017).
Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4, 1402. https://doi.org/10.1038/ncomms2409 (2013).
Google Scholar
Oppenheimer, M. et al. Sea level rise and implications for low-lying islands, coasts and communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).
Alvarez-Filip, L., González-Barrios, F. J., Pérez-Cervantes, E., Molina-Hernández, A. & Estrada-Saldívar, N. Stony coral tissue loss disease decimated Caribbean coral populations and reshaped reef functionality. Commun. Biol. 5, 440. https://doi.org/10.1038/s42003-022-03398-6 (2022).
Google Scholar
Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400. https://doi.org/10.1038/s41586-018-0194-z (2018).
Google Scholar
van Woesik, R. & Cacciapaglia, C. W. Carbonate production of Micronesian reefs suppressed by thermal anomalies and Acanthaster as sea-level rises. PLoS ONE 14, e0224887. https://doi.org/10.1371/journal.pone.0224887 (2019).
Google Scholar
van Woesik, R. & Cacciapaglia, C. W. Thermal stress jeopardizes carbonate production of coral reefs across the western and central Pacific Ocean. PLoS ONE 16, e0249008. https://doi.org/10.1371/journal.pone.0249008 (2021).
Google Scholar
van Woesik, R. & Cacciapaglia, C. W. Keeping up with sea-level rise: Carbonate production rates in Palau and Yap, western Pacific Ocean. PLoS ONE 13, e0197077. https://doi.org/10.1371/journal.pone.0197077 (2018).
Google Scholar
Eakin, C. M. Where have all the carbonates gone? A model comparison of calcium carbonate budgets before and after the 1982–1983 El Niño at Uva Island in the eastern Pacific. Coral Reefs 15, 109–119. https://doi.org/10.1007/BF01771900 (1996).
Google Scholar
Perry, C. T. & Morgan, K. M. Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs. Sci. Rep. 7, 40581. https://doi.org/10.1038/srep40581 (2017).
Google Scholar
Connell, J. H. Disturbance and recovery of coral assemblages. Coral Reefs 16, S101–S113. https://doi.org/10.1007/s003380050246 (1997).
Google Scholar
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83. https://doi.org/10.1126/science.aan8048 (2018).
Google Scholar
Dana, T. F. Development of contemporary eastern Pacific coral reefs. Mar. Biol. 33, 355–374. https://doi.org/10.1007/BF00390574 (1975).
Google Scholar
Cortés, J. Eastern tropical Pacific coral reefs. In The Encyclopedia of Modern Coral Reefs: Structure, Form and Process. 351–358 (2011).
O’Dea, A., Hoyos, N., Rodríguez, F., Degracia, B. & de Gracia, C. History of upwelling in the tropical eastern Pacific and the paleogeography of the Isthmus of Panama. Palaeogeogr. Palaeoclimatol. Palaeoecol. 348–349, 59–66. https://doi.org/10.1016/j.palaeo.2012.06.007 (2012).
Google Scholar
Glynn, P. W. & Colgan, M. W. Sporadic disturbances in fluctuating coral reef environments: El Niño and coral reef development in the Eastern Pacific. Am. Zool. 32, 707–718. https://doi.org/10.1093/icb/32.6.707 (1992).
Google Scholar
Manzello, D. P. et al. Poorly cemented coral reefs of the eastern tropical Pacific: Possible insights into reef development in a high-CO2 world. Proc. Natl. Acad. Sci. USA 105, 10450–10455. https://doi.org/10.1073/pnas.0712167105 (2008).
Google Scholar
Eakin, C. M. & Glynn, P. W. Low tidal exposures and reef mortalities in the eastern Pacific. Coral Reefs 15, 120 (1996).
Google Scholar
Glynn, P. W. Some physical and biological determinants of coral community structure in the eastern pacific. Ecol. Monogr. 46, 431–456. https://doi.org/10.2307/1942565 (1976).
Google Scholar
Toth, L. T., Macintyre, I. G. & Aronson, R. B. Holocene reef development in the eastern tropical Pacific. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 177–201 (Springer, 2017).
Cortés, J., Macintyre, I. G. & Glynn, P. W. Holocene growth history of an eastern Pacific fringing reef, Punta Islotes, Costa Rica. Coral Reefs 13, 65–73. https://doi.org/10.1007/BF00300763 (1994).
Google Scholar
Glynn, P. W. et al. Eastern pacific coral reef provinces, coral community structure and composition: An overview. In Coral Reefs of the Eastern Tropical Pacific (eds Glynn, P. W., Manzello, D. P., Enochs, I. C.) 107–176 (Springer, 2017).
Glynn, P. W. & Macintyre, I. G. Growth rate and age of coral reefs on the Pacific coast of Panama. In Proceedings of the 3rd International Coral Reef Symposium, Miami, vol. 2, 251–259 (1977).
Glynn, P. W. & Stewart, R. H. Distribution of coral reefs in the Pearl Islands (Gulf of Panama) in relation to thermal conditions. Limnol. Oceanogr. 18, 367–379. https://doi.org/10.4319/lo.1973.18.3.0367 (1973).
Google Scholar
Glynn, P. W., Druffel, E. M. & Dunbar, R. B. A dead Central American coral reef tract: Possible link with the Little Ice Age (Costa Rica, Gulf of Papagayo, Gulf of Panama). J. Mar. Res. 41, 605–637. https://doi.org/10.1357/002224083788519740 (1983).
Google Scholar
Glynn, P. W. & Leyte Morales, G. E. Coral reefs of Huatulco, west México: Reef development in upwelling Gulf of Tehuantepec. Rev. Biol. Trop. 45, 1033–1047 (1997).
Tribollet, A. & Golubic, S. Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24, 422–434. https://doi.org/10.1007/s00338-005-0003-7 (2005).
Google Scholar
D’Croz, L. & O’Dea, A. Variability in upwelling along the Pacific shelf of Panama and implications for the distribution of nutrients and chlorophyll. Estuar. Coast. Shelf S. 73, 325–340. https://doi.org/10.1016/j.ecss.2007.01.013 (2007).
Google Scholar
Randall, C. J., Toth, L. T., Leichter, J. J., Maté, J. L. & Aronson, R. B. Upwelling buffers climate change impacts on coral reefs of the eastern tropical Pacific. Ecology 101, e02918. https://doi.org/10.1002/ecy.2918 (2020).
Google Scholar
Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281. https://doi.org/10.1111/j.1466-8238.2011.00656.x (2012).
Google Scholar
Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284. https://doi.org/10.1111/geb.12693 (2018).
Google Scholar
R Development Core Team. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. R Foundation for Statistical Computing vol. 2.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016). ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. (2022). https://paleolimbot.github.io/ggspatial/, https://github.com/paleolimbot/ggspatial.
Toth, L. T. et al. ENSO drove 2500-year collapse of eastern Pacific coral reefs. Science 336, 81–84. https://doi.org/10.1126/science.1221168 (2012).
Google Scholar
Toth, L. T. et al. Climatic and biotic thresholds of coral-reef shutdown. Nat. Clim. Change 5, 369–374. https://doi.org/10.1038/nclimate2541 (2015).
Google Scholar
Guzman, H. & Cortés, J. Arrecifes coralinos del Pacífico oriental tropical: revisión y perspectivas. Rev. Biol. Trop. 41, 535–557 (1993).
Chollett, I., Mumby, P. J. & Cortés, J. Upwelling areas do not guarantee refuge for coral reefs in a warming Ocean. Mar. Ecol. Prog. Ser. 416, 47–56. https://doi.org/10.3354/meps08775 (2010).
Google Scholar
Glynn, P. W., Maté, J. L., Baker, A. C. & Calderón, M. O. Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern Oscillation event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bull. Mar. Sci. 69, 79–109 (2001).
Paz-García, D. A., Hellberg, M. E., García-de-León, F. J. & Balart, E. F. Switch between morphospecies of Pocillopora corals. Am. Nat. 186, 434–440. https://doi.org/10.1086/682363 (2015).
Google Scholar
Tortolero-Langarica, J. J. A., Rodríguez-Troncoso, A. P., Cupul-Magaña, A. L. & Carricart-Ganivet, J. P. Calcification and growth rate recovery of the reef-building Pocillopora species in the northeast tropical Pacific following an ENSO disturbance. PeerJ 2017, e3191. https://doi.org/10.7717/peerj.3191 (2017).
Google Scholar
Medellín-Maldonado, F. et al. Calcification of the main reef-building coral species on the Pacific coast of southern Mexico. Cienc. Mar. 42, 209–225. https://doi.org/10.7773/cm.v42i3.2650 (2016).
Google Scholar
Cabral-Tena, R. A. et al. Calcification of coral assemblages in the eastern Pacific: Reshuffling calcification scenarios under climate change. Ecol. Indic. 95, 726–734. https://doi.org/10.1016/j.ecolind.2018.08.021 (2018).
Google Scholar
Glynn, P. Coral growth in upwelling and nonupwelling areas off the Pacific coast of Panama. J. Mar. Res. 35, 567–585 (1977).
Guzman, H. M. & Cortes, J. Growth rates of eight species of scleractinian corals in the eastern Pacific (Costa Rica). Bull. Mar. Sci. 44, 1186–1194 (1989).
Cabral-Tena, R. A. et al. Functional potential of coral assemblages along a typical eastern tropical Pacific reef tract. Ecol. Indic. 119, 106795. https://doi.org/10.1016/j.ecolind.2020.106795 (2020).
Google Scholar
Manzello, D. P. Coral growth with thermal stress and ocean acidification: Lessons from the eastern tropical Pacific. Coral Reefs 29, 749–758. https://doi.org/10.1007/s00338-010-0623-4 (2010).
Google Scholar
González-Barrios, F. J. & Álvarez-Filip, L. A framework for measuring coral species-specific contribution to reef functioning in the Caribbean. Ecol. Indic. 95, 877–886. https://doi.org/10.1016/j.ecolind.2018.08.038 (2018).
Google Scholar
Jokiel, P. L., Maragos, J. & Franzisket, L. Coral growth: Buoyant weight technique. In Coral Reefs: Research Methods (eds Stoddart, D. R., & Johannes, R. E.) 529–541 (UNESCO, 1978).
Kuffner, I. B., Hickey, T. D. & Morrison, J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs 32, 987–997. https://doi.org/10.1007/s00338-013-1047-8 (2013).
Google Scholar
Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. USA 118, e2015265118. https://doi.org/10.1073/pnas.201526511 (2021).
Google Scholar
Rose, C. S. & Risk, M. J. Increase in Cliona delitrix infestation of Montastrea cavernosa heads on an organically polluted portion of the Grand Cayman fringing reef. Mar. Ecol. 6, 345–363. https://doi.org/10.1111/j.1439-0485.1985.tb00142.x (1985).
Google Scholar
Prouty, N. G. et al. Vulnerability of coral reefs to bioerosion from land-based sources of pollution. J. Geophys. Res-Oceans 122, 9319–9331. https://doi.org/10.1002/2017JC013264 (2017).
Google Scholar
Eakin, C. M. The damselfish-algal lawn symbiosis and its influence on the bioerosion of an El Niño impacted coral reef, Uva Island, Pacific Panama. ProQuest Dissertations and Theses (1991).
Alvarado, J. J., Reyes-Bonilla, H. & Benítez-Villalobos, F. Diadema mexicanum, erizo de mar clave en los arrecifes coralinos del Pacífico Tropical Oriental: Lo que sabemos y perspectivas futuras (Diadematoida: Diadematidae). Rev. Biol. Trop. 63(Suppl 2), 135–157. https://doi.org/10.15517/rbt.v63i2.23140 (2015).
Google Scholar
Glynn, P. W. Widespread coral mortality and the 1982–83 El Niño warming event. Environ. Conserv. 11, 133–146. https://doi.org/10.1017/S0376892900013825 (1984).
Google Scholar
Glynn, P. W. El Niño warming, coral mortality and reef framework destruction by echinoid bioerosion in the eastern Pacific. Galaxea 7, 129–160 (1988).
Eakin, C. M. A tale of two ENSO events: Carbonate budgets and the influence of two warming disturbances and intervening variability, Uva Island, Panama. Bull. Mar. Sci. 69, 171–186 (2001).
Google Scholar
Russ, G. R., Questel, S. L. A., Rizzari, J. R. & Alcala, A. C. The parrotfish–coral relationship: Refuting the ubiquity of a prevailing paradigm. Mar. Biol. 162, 2029–2045. https://doi.org/10.1007/s00227-015-2728-3 (2015).
Google Scholar
Wellington, G. M. & Glynn, P. W. Responses of Coral Reefs to El Niño-Southern Oscillation Sea-Warming Events. In Geological Approaches to Coral Reef Ecology (ed Aronson, R. B.) 342–385 (Springer, 2007).
Guzmán, H. M. & Cortés, J. Changes in reef community structure after fifteen years of natural disturbances in the eastern Pacific (Costa Rica). Bull. Mar. Sci. 69, 133–149 (2001).
Guzman, H. M. & Cortés, J. Reef recovery 20 years after the 1982–1983 El Niño massive mortality. Mar. Biol. 151, 401–411. https://doi.org/10.1007/s00227-006-0495-x (2007).
Google Scholar
Edmunds, P. J. et al. Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar. Ecol. Prog. Ser. 608, 297–306. https://doi.org/10.3354/meps12805 (2019).
Google Scholar
Enochs, I. C. et al. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Proc. R. Soc. B 283, 20161742. https://doi.org/10.1098/rspb.2016.1742 (2016).
Google Scholar
Roff, G. Reef accretion and coral growth rates are decoupled in Holocene reef frameworks. Mar. Geol. 419, 106065. https://doi.org/10.1016/j.margeo.2019.106065 (2020).
Google Scholar
Perry, C. T. et al. Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth. Glob. Change Biol. 21, 1153–1164. https://doi.org/10.1111/gcb.12792 (2015).
Google Scholar
IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC (2014).
Neumann, A. C. & Macintyre, I. Reef response to sea level rise: Keep-up, catch-up or give up. In Proceedings 5th International Coral Reef Congress, Tahiti 3, 105–110 (1985).
Macintyre, I. G. Modern coral reefs of western Atlantic: New geological perspective. AAPG Bull. 72, 1360–1369. https://doi.org/10.1306/703C99A1-1707-11D7-8645000102C1865D (1988).
Google Scholar
Hallock, P. & Schlager, W. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios 1, 389–398. https://doi.org/10.2307/3514476 (1986).
Google Scholar
Kleypas, J. A. Coral reef development under naturally turbid conditions: Fringing reefs near Broad Sound, Australia. Coral Reefs 15, 153–167. https://doi.org/10.1007/BF01145886 (1996).
Google Scholar
van Woesik, R. & Done, T. J. Coral communities and reef growth in the southern Great Barrier Reef. Coral Reefs 16, 103–115. https://doi.org/10.1007/s003380050064 (1997).
Google Scholar
Sully, S. & van Woesik, R. Turbid reefs moderate coral bleaching under climate-related temperature stress. Glob. Change Biol. 26, 1367–1373. https://doi.org/10.1111/gcb.14948 (2020).
Google Scholar
Grottoli, A. G., Rodrigues, L. J. & Palardy, J. E. Heterotrophic plasticity and resilience in bleached corals. Nature 440, 1186–1189. https://doi.org/10.1038/nature04565 (2006).
Google Scholar
Romero-Torres, M. et al. Coral reef resilience to thermal stress in the eastern tropical Pacific. Glob. Change Biol. 26, 3880–3890. https://doi.org/10.1111/gcb.15126 (2020).
Google Scholar
Martínez-Castillo, V., Rodríguez-Troncoso, A. P., Mayfield, A. B., Rodríguez-Zaragoza, F. A. & Cupul-Magaña, A. L. Coral recovery in the central Mexican Pacific 20 years after the 1997–1998 El Niño Event. Oceans 3, 48–59. https://doi.org/10.3390/oceans3010005 (2022).
Google Scholar
Anton, A. et al. Differential thermal tolerance between algae and corals may trigger the proliferation of algae in coral reefs. Glob. Change Biol. 26, 4316–4327. https://doi.org/10.1111/gcb.15141 (2020).
Google Scholar
Roth, F. et al. High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. Ecology 102, e03226. https://doi.org/10.1002/ecy.3226 (2021).
Google Scholar
Roik, A., Röthig, T., Pogoreutz, C., Saderne, V. & Voolstra, C. R. Coral reef carbonate budgets and ecological drivers in the central Red Sea—A naturally high temperature and high total alkalinity environment. Biogeosciences 15, 6277–6296. https://doi.org/10.5194/bg-15-6277-2018 (2018).
Google Scholar
Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34. https://doi.org/10.1038/s41561-019-0486-4 (2020).
Google Scholar
Smith, T. B., Glynn, P. W., Maté, J. L., Toth, L. T. & Gyory, J. A depth refugium from catastrophic coral bleaching prevents regional extinction. Ecology 95, 1663–1673. https://doi.org/10.1890/13-0468.1 (2014).
Google Scholar
Guest, J. R. et al. A framework for identifying and characterising coral reef “oases” against a backdrop of degradation. J. Appl. Ecol. 55, 2865–2875. https://doi.org/10.1111/1365-2664.13179 (2018).
Google Scholar
Courtney, T. A. et al. Disturbances drive changes in coral community assemblages and coral calcification capacity. Ecosphere 11, e03066. https://doi.org/10.1002/ecs2.3066 (2020).
Google Scholar
Bachman, S. D., Kleypas, J. A., Erdmann, M. & Setyawan, E. A global atlas of potential thermal refugia for coral reefs generated by internal gravity waves. Front. Mar. Sci. 9, 1346. https://doi.org/10.3389/fmars.2022.921879 (2022).
Google Scholar
Dixon, A. M., Forster, P. M., Heron, S. F., Stoner, A. M. & Beger, M. Future loss of local-scale thermal refugia in coral reef ecosystems. PLoS Clim. 1, e0000004. https://doi.org/10.1371/journal.pclm.0000004 (2022).
Google Scholar
Kuffner, I. B., Stathakopoulos, A., Toth, L. T. & Bartlett, L. A. Reestablishing a stepping-stone population of the threatened elkhorn coral Acropora palmata to aid regional recovery. Endanger. Species Res. 43, 461–473. https://doi.org/10.3354/esr01083 (2020).
Google Scholar
Perry, C. T., Lange, I. D. & Januchowski-Hartley, F. A. ReefBudget Indo Pacific: Online resource and methodology. http://geography.exeter.ac.uk/reefbudget/ (2018).
Nava, H. & Carballo, J. L. Chemical and mechanical bioerosion of boring sponges from Mexican Pacific coral reefs. J. Exp. Biol. 211, 2827–2831. https://doi.org/10.1242/jeb.019216 (2008).
Google Scholar
Carballo, J. L., Bautista, E., Nava, H., Cruz-Barraza, J. A. & Chávez, J. A. Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecol. Evol. 3, 872–886. https://doi.org/10.1002/ece3.452 (2013).
Google Scholar
Smith, T. B. Temperature effects on herbivory for an Indo-Pacific parrotfish in Panamá: Implications for coral-algal competition. Coral Reefs 27, 397–405. https://doi.org/10.1007/s00338-007-0343-6 (2008).
Google Scholar
Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W. & Serafy, J. E. Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar. Ecol. Prog. Ser. 495, 233–247. https://doi.org/10.3354/meps10594 (2014).
Google Scholar
Palacios, M. M., Muñoz, C. G. & Zapata, F. A. Fish corallivory on a pocilloporid reef and experimental coral responses to predation. Coral Reefs 33, 625–636. https://doi.org/10.1007/s00338-014-1173-y (2014).
Google Scholar
Toth, L. T. Holocene Coral-Reef Development in the Tropical Eastern Pacific. (Florida Institute of Technology, 2013).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. https://cran.r-project.org/package=nlme.R-project (2021).
Holgate, S. J. et al. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 29, 493–504. https://doi.org/10.2112/JCOASTRES-D-12-00175.1 (2013).
Google Scholar
Permanent Service for Mean Sea Level. Balboa Tide Gauge Data. http://www.psmsl.org/data/obtaining/ (2022).
Source: Ecology - nature.com