in

Restoration of insect communities after land use change is shaped by plant diversity: a case study on carabid beetles (Carabidae)

  • Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. https://doi.org/10.1038/nature14324 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426. https://doi.org/10.1016/j.biocon.2020.108426 (2020).

    Article 

    Google Scholar 

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).

    Article 
    CAS 

    Google Scholar 

  • Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Cons. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).

    Article 

    Google Scholar 

  • Yang, L. H. & Gratton, C. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2, 26–32. https://doi.org/10.1016/j.cois.2014.06.004 (2014).

    Article 

    Google Scholar 

  • Bowler, D. E., Heldbjerg, H., Fox, A. D., de Jong, M. & Böhning-Gaese, K. Long-term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 33, 1120–1130. https://doi.org/10.1111/cobi.13307 (2019).

    Article 

    Google Scholar 

  • Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354. https://doi.org/10.1126/science.1127863 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (2005).

    Article 

    Google Scholar 

  • Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556. https://doi.org/10.1038/nature09492 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Siemann, E., Tilman, D. & Haarstad, J. Insect species diversity, abundance and body size relationships. Nature 380, 704–706. https://doi.org/10.1038/380704a0 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Borer, E. T., Seabloom, E. W. & Tilman, D. Plant diversity controls arthropod biomass and temporal stability. Ecol. Lett. 15, 1457–1464. https://doi.org/10.1111/ele.12006 (2012).

    Article 

    Google Scholar 

  • Ebeling, A. et al. Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic Appl. Ecol. 26, 50–63. https://doi.org/10.1016/j.baae.2017.09.014 (2018).

    Article 

    Google Scholar 

  • Ebeling, A. et al. Plant diversity induces shifts in the functional structure and diversity across trophic levels. Oikos 127, 208–219. https://doi.org/10.1111/oik.04210 (2018).

    Article 

    Google Scholar 

  • Ebeling, A. et al. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9, e106529. https://doi.org/10.1371/journal.pone.0106529 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Marquard, E. et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90, 3290–3302 (2009).

    Article 

    Google Scholar 

  • Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845. https://doi.org/10.1126/science.1060391 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Simons, N. K. et al. Resource-mediated indirect effects of grassland management on arthropod diversity. PLoS ONE 9, e107033. https://doi.org/10.1371/journal.pone.0107033 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wardle, D. A., Nicholson, K. S., Bonner, K. I. & Yeates, G. W. Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a seven-year period. Soil Biol. Biochem. 31, 1691–1706 (1999).

    Article 
    CAS 

    Google Scholar 

  • Luff, M. L. & Rushton, S. P. The ground beetle and spider fauna of managed and unimproved upland pasture. Agr. Ecosyst. Environ. 25, 195–206 (1989).

    Article 

    Google Scholar 

  • Dennis, P., Young, M. R., Howard, C. L. & Gordon, I. J. The response of epigeal beetles (Col, Carabidae, Staphylinidae) to varied grazing regimes on upland Nardus stricta grasslands. J. Appl. Ecol. 34, 433–443 (1997).

    Article 

    Google Scholar 

  • Murdoch, W. W., Evans, F. C. & Peterson, C. H. Diversity and pattern in plants and insects. Ecology 53, 819–829 (1972).

    Article 

    Google Scholar 

  • Siemann, E., Tilman, D., Haarstad, J. & Ritchie, M. Experimental tests of the dependence of arthropod diversity on plant diversity. Am. Nat. 152, 738–750 (1998).

    Article 
    CAS 

    Google Scholar 

  • Joern, A. & Laws, A. N. Ecological mechanisms underlying arthropod species diversity in grasslands. Annu. Rev. Entomol. 58, 19–36. https://doi.org/10.1146/annurev-ento-120811-153540 (2013).

    Article 
    CAS 

    Google Scholar 

  • Hunter, M. D. & Price, P. W. Playing chutes and ladders: Heterogeneity and relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732 (1992).

    Article 

    Google Scholar 

  • Knops, J. M. H. et al. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett. 2, 286–293 (1999).

    Article 
    CAS 

    Google Scholar 

  • Thiele, H. U. Carabid beetles in their environment. A study on habitat selection by adaptions in physiology and behaviour. (Springer- Verlag, 1977).

  • Harvey, J. A., van der Putten, W. H., Turin, H., Wagenaar, R. & Bezemer, T. M. Effects of changes in plant species richness and community traits on carabid assemblages and feeding guilds. Agr. Ecosyst. Environ. 127, 100–106 (2008).

    Article 

    Google Scholar 

  • Luff, M. L. Use of Carabids as environmental indicators in grasslands and cereals. Ann. Zool. Fenn. 33, 185–195 (1996).

    Google Scholar 

  • Kotze, D. J. et al. Forty years of carabid beetle research in Europe—from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys https://doi.org/10.3897/zookeys.100.1523 (2011).

    Article 

    Google Scholar 

  • Barnes, A. D. et al. Biodiversity enhances the multitrophic control of arthropod herbivory. Sci. Adv. 6, eabb6603. https://doi.org/10.1126/sciadv.abb6603 (2020).

    Article 
    ADS 

    Google Scholar 

  • Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B: Biol. Sci. 273, 1715–1727. https://doi.org/10.1098/rspb.2006.3530 (2006).

    Article 
    CAS 

    Google Scholar 

  • Lövei, G. L. & Magura, T. Ground beetle (Coleoptera: Carabidae) diversity is higher in narrow hedges composed of a native compared to non-native trees in a Danish agricultural landscape. Insect Conserv. Divers. 10, 141–150. https://doi.org/10.1111/icad.12210 (2017).

    Article 

    Google Scholar 

  • Loreau, M. Consumers as maximizers of matter and energy flow in ecosystems. Am. Nat. 145, 22–42. https://doi.org/10.1086/285726 (1995).

    Article 

    Google Scholar 

  • Mielke, L. et al. Nematode grazing increases the allocation of plant-derived carbon to soil bacteria and saprophytic fungi, and activates bacterial species of the rhizosphere. Pedobiologia 90, 150787. https://doi.org/10.1016/j.pedobi.2021.150787 (2022).

    Article 

    Google Scholar 

  • Holland, J. M. & Luff, M. L. The effects of agricultural practices on Carabidae in temperate agroecosystems. Integr. Pest Manag. Rev. 5, 109–129. https://doi.org/10.1023/A:1009619309424 (2000).

    Article 

    Google Scholar 

  • Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: An experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).

    Article 

    Google Scholar 

  • Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2017.06.002 (2017).

    Article 

    Google Scholar 

  • Freude, H., Harde, K. W. & Lohse, G. A. Die Käfer Mitteleuropas Bd.1–11. (Goecke & Evers, 1965–83).

  • Koch, K. Die Käfer Mitteleuropas. Ökologie Bd.1–6. (Goecke & Evers, 1989–95).

  • R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110. https://doi.org/10.1093/jpe/rtw107 (2017).

    Article 

    Google Scholar 

  • Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, 2009).

  • Oksanen, J. et al. vegan: Community Ecology Package v. 2.6–2 (2022).

  • Lenth, R. et al., emmeans: Estimated Marginal Means, aka Least-Squares Means v. 1.8.1-1 (2022).

  • Lovei, G. L. & Sunderland, K. D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41, 231–256 (1996).

    Article 
    CAS 

    Google Scholar 

  • Ravenek, J. M. et al. Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123, 1528–1536. https://doi.org/10.1111/oik.01502 (2014).

    Article 

    Google Scholar 

  • Root, R. Organization of a plant -arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).

    Article 

    Google Scholar 

  • Duelli, P. & Obrist, M. K. Regional biodiversity in an agricultural landscape: The contribution of seminatural habitat islands. Basic Appl. Ecol. 4, 129–138 (2003).

    Article 

    Google Scholar 

  • Perner, J. & Malt, S. Assessment of changing agricultural land use: Response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agr. Ecosyst. Environ. 98, 169–181 (2003).

    Article 

    Google Scholar 

  • Purtauf, T., Dauber, J. & Wolters, V. Carabid communities in the spatio-temporal mosaic of a rural landscape. Landsc. Urban Plan. 67, 185–193 (2004).

    Article 

    Google Scholar 

  • Eisenhauer, N. et al. Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. Res. Ideas Outcomes https://doi.org/10.3897/rio.5.e47042 (2019).

    Article 

    Google Scholar 

  • Guerrero-Ramirez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642. https://doi.org/10.1038/s41559-017-0325-1 (2017).

    Article 

    Google Scholar 

  • Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592. https://doi.org/10.1126/science.1217909 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: Patterns and processes. Ecol. Lett. 12, 443–451. https://doi.org/10.1111/j.1461-0248.2009.01299.x (2009).

    Article 

    Google Scholar 

  • Blake, S., Foster, G. N., Fisher, G. E. J. & Ligertwood, G. L. Effects of management practices on the carabid faunas of newly established wildflower meadows in southern Scotland. Ann. Zool. Fenn. 33, 139–147 (1996).

    Google Scholar 

  • Boetzl, F. A., Krimmer, E., Krauss, J. & Steffan-Dewenter, I. Agri-environmental schemes promote ground-dwelling predators in adjacent oilseed rape fields: Diversity, species traits and distance-decay functions. J. Appl. Ecol. 56, 10–20. https://doi.org/10.1111/1365-2664.13162 (2019).

    Article 

    Google Scholar 

  • Knapp, M., Seidl, M., Knappová, J., Macek, M. & Saska, P. Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Sci. Rep. 9, 8967. https://doi.org/10.1038/s41598-019-45378-7 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Looking for massive carbon capture

    A simple soil mass correction for a more accurate determination of soil carbon stock changes