in

Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe

  • Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Sabatini, F. M. et al. Global patterns of vascular plant alpha diversity. Nat. Commun. 13, 4683 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Google Scholar 

  • Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    CAS 

    Google Scholar 

  • Garnier, E., Navas, M.-L. & Grigulis, K. Plant functional diversity. Organism traits, community structure, and ecosystem properties (Oxford University Press, Oxford, New York, NY, 2016).

  • Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. Camb. Philos. Soc. 92, 1156–1173 (2017).

    Google Scholar 

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS 

    Google Scholar 

  • Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. U.S.A. 111, 740–745 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    ADS 
    CAS 

    Google Scholar 

  • Salguero-Gómez, R. et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl. Acad. Sci. U. S. A. 113, 230–235 (2016).

    ADS 

    Google Scholar 

  • Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).

    ADS 

    Google Scholar 

  • Bruelheide, H. et al. Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    Google Scholar 

  • McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    Google Scholar 

  • Miller, J. E. D., Damschen, E. I. & Ives, A. R. Functional traits and community composition: A comparison among community‐weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 10, 415–425 (2019).

    Google Scholar 

  • Guerin, G. R. et al. Environmental associations of abundance-weighted functional traits in Australian plant communities. Basic Appl. Ecol. 58, 98–109 (2021).

    Google Scholar 

  • Walter, H. Vegetation of the earth and ecological systems of the geo-biosphere (Springer-Verlag, Berlin, Germany, 1985).

  • Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).

    Google Scholar 

  • Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil-climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).

    Google Scholar 

  • Cubino, J. P. et al. The leaf economic and plant size spectra of European forest understory vegetation. Ecography 44, 1311–1324 (2021).

    Google Scholar 

  • Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).

    Google Scholar 

  • Herben, T., Klimešová, J. & Chytrý, M. Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Funct. Ecol. 32, 799–808 (2018).

    Google Scholar 

  • Linder, H. P. et al. Biotic modifiers, environmental modulation and species distribution models. J. Biogeogr. 39, 2179–2190 (2012).

    Google Scholar 

  • Gross, N. et al. Linking individual response to biotic interactions with community structure: a trait-based framework. Funct. Ecol. 23, 1167–1178 (2009).

    Google Scholar 

  • Ordonez, A. & Svenning, J.-C. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders. Sci. Rep. 7, 42988 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Kemppinen, J. et al. Consistent trait–environment relationships within and across tundra plant communities. Nat. Ecol. Evol. 5, 458–467 (2021).

    Google Scholar 

  • Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19, 173–180 (2016).

    Google Scholar 

  • Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. EnviDat, https://doi.org/10.16904/envidat.228 (2018).

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Google Scholar 

  • Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change. Biol. 26, 119–188 (2020).

    ADS 

    Google Scholar 

  • Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 24, 493–501 (2010).

    Google Scholar 

  • Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004. Report to: European Environment Agency, European Topic Centre on Nature Protection and Biodiversity, 2004.

  • Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23, 648–675 (2020).

    Google Scholar 

  • Pausas, J. G. & Bond, W. J. Humboldt and the reinvention of nature. J. Ecol. 107, 1031–1037 (2019).

    Google Scholar 

  • Meng, T.-T. et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352 (2015).

    ADS 

    Google Scholar 

  • Fang, J. et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32, 81 (2005).

    Google Scholar 

  • Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl. Acad. Sci. U.S.A. 114, E10937–E10946 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Gong, H. & Gao, J. Soil and climatic drivers of plant SLA (specific leaf area). Glob. Ecol. Conserv. 20, e00696 (2019).

    Google Scholar 

  • Laughlin, D. C. et al. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nat. Ecol. Evol. 5, 1–12 (2021).

    Google Scholar 

  • Carmona, C. P. et al. Fine-root traits in the global spectrum of plant form and function. Nature 597, 683–687 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Ding, J., Travers, S. K. & Eldridge, D. J. Occurrence of Australian woody species is driven by soil moisture and available phosphorus across a climatic gradient. J. Veg. Sci. 32, e13095 (2021).

    Google Scholar 

  • Falster, D. S. & Westoby, M. Plant height and evolutionary games. Trends Ecol. Evol. 18, 337–343 (2003).

    Google Scholar 

  • Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).

    ADS 
    CAS 

    Google Scholar 

  • McLachlan, A. & Brown, A. C. Coastal Dune Ecosystems and Dune/Beach Interactions. In The Ecology of Sandy Shores (Elsevier), 251–271 (2006).

  • Cui, E., Weng, E., Yan, E. & Xia, J. Robust leaf trait relationships across species under global environmental changes. Nat. Commun. 11, 1–9 (2020).

    ADS 

    Google Scholar 

  • Cain, S. A. Life-Forms and Phytoclimate. Bot. Rev. 16, 1–32 (1950).

    Google Scholar 

  • Yu, S. et al. Shift of seed mass and fruit type spectra along longitudinal gradient: high water availability and growth allometry. Biogeosciences 18, 655–667 (2021).

    ADS 

    Google Scholar 

  • Murray, B. R., Brown, A. H. D., Dickman, C. R. & Crowther, M. S. Geographical gradients in seed mass in relation to climate. J. Biogeogr. 31, 379–388 (2004).

    Google Scholar 

  • Metz, J. et al. Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J. Ecol. 98, 697–704 (2010).

    Google Scholar 

  • Tao, S., Guo, Q., Li, C., Wang, Z. & Fang, J. Global patterns and determinants of forest canopy height. Ecology 97, 3265–3270 (2016).

    Google Scholar 

  • Gonzalez, P., Neilson, R. P., Lenihan, J. M. & Drapek, R. J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010).

    Google Scholar 

  • Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Chang. 10, 965–970 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Bruelheide, H. et al. sPlot—A new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).

    Google Scholar 

  • Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).

    Google Scholar 

  • Shan, H. et al. Gap filling in the plant kingdom—trait prediction using hierarchical probabilistic matrix factorization (Proceedings of the 29 th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012).

  • Chytrý, M. et al. EUNIS-ESy, version 2021-06-01, https://doi.org/10.5281/zenodo.4812736 (2021).

  • Wood, S. N., Pya, N. & Säfken, B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).

    MathSciNet 
    CAS 

    Google Scholar 

  • Wood, S. N. Generalized Additive Models. An Introduction with R, Second Edition (CRC Press, Portland, Oregon, USA, 2017).

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 

  • Johnson, P. C. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).

    Google Scholar 

  • R. Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2022).

  • Lenth, R. V. et al. emmeans: estimated marginal means, aka least-squares means; R package version 1.6.2-1 (2021).

  • Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).

    ADS 

    Google Scholar 

  • Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modelling; R package version 1.3-3 (2020).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).

  • Kambach, S. Habitat-specificity of climate-trait relationships in plant communities across Europe. github.com/StephanKambach, version 1.0; https://doi.org/10.5281/zenodo.7404176 (2022).

  • Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).

    Google Scholar 

  • Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).

    Google Scholar 

  • Zheng, J., Guo, Z. & Wang, X. Seed mass of angiosperm woody plants better explained by life history traits than climate across China. Sci. Rep. 7, 2741 (2017).

    ADS 

    Google Scholar 

  • Saatkamp, A. et al. A research agenda for seed-trait functional ecology. N. Phytol. 221, 1764–1775 (2019).

    Google Scholar 

  • Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine‐root trait variation. J. Ecol. 105, 1182–1196 (2017).

    Google Scholar 

  • Weigelt, A. et al. An integrated framework of plant form and function: The belowground perspective. N. Phytol. 232, 42–59 (2021).

    Google Scholar 


  • Source: Ecology - nature.com

    Familiarity, age, weaning and health status impact social proximity networks in dairy calves

    Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change