in

Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests

  • Wohlleben, P. The Hidden Life of Trees: What They Feel, How They Communicate—Discoveries From a Secret World Vol. 1 (Greystone Books, 2016).

  • Simard, S. W. Finding the Mother Tree: Discovering the Wisdom of the Forest (Knopf Doubleday Publishing Group, 2022).

  • Powers, R. The Overstory (W. W. Norton & Company, 2018).

  • Jabr, F. The social life of forests. New York Times Magazine https://www.nytimes.com/interactive/2020/12/02/magazine/tree-communication-mycorrhiza.html (2020).

  • Kaplan, S. With forests in peril, she’s on a mission to save ‘mother trees’. Washington Post (27 December 2022).

  • Chung, D. & Williams, R. T. Talking trees. Natl Geogr. 233, 6 (2018).

    Google Scholar 

  • Grant, R. Do trees talk to each other? Smithsonian Magazine https://www.smithsonianmag.com/science-nature/the-whispering-trees-180968084/ (2018).

  • Schwartzberg, L. Fantastic Fungi. Moving Art (2019).

  • Druyan, A. Cosmos: Possible Worlds: the Search for Intelligent Life on Earth (2020).

  • Mills, M. C’mon C’mon (2020).

  • Simard, S. W. How trees talk to each other. YouTube https://www.youtube.com/watch?v=Un2yBgIAxYs (2016).

  • Abumrad J & Krulwich, R. From tree to shining tree. Radiolab https://radiolab.org/episodes/from-tree-to-shining-tree (2016).

  • Geddes, L. Unearthing the secret social lives of trees. The Guardian Science Weekly https://www.theguardian.com/science/audio/2021/apr/29/unearthing-the-secret-social-lives-of-trees-podcast (2021).

  • Davies, D. Trees talk to each other. ‘Mother Tree’ ecologist hears lessons for people, too. National Public Radio https://www.npr.org/sections/health-shots/2021/05/04/993430007/trees-talk-to-each-other-mother-tree-ecologist-hears-lessons-for-people-too (2021).

  • Braff, Z. Midnight train to Royston. Ted Lasso (2021).

  • Murphy, R. Welcome, friends. The Watcher (2022).

  • Milović, M., Kebert, M. & Orlović, S. How mycorrhizas can help forests to cope with ongoing climate change? Pregledni Članci Rev. 5, 279–286 (2021).

    Google Scholar 

  • Simard, S. W. & Austin, M. E. in Climate Change and Variabilty (eds Simard, S. W. & Austin, M. E.) 275–302 (IntechOpen Europe, 2010).

  • Domínguez-Núñez, J. A. in Structure and Functions of the Pedosphere (eds Giri, B. et al.) 365–391 (Springer, 2022).

  • Authier, L., Violle, C. & Richard, F. Ectomycorrhizal networks in the anthropocene: from natural ecosystems to urban planning. Front. Plant Sci. 13, 900231 (2022).

    Article 

    Google Scholar 

  • Selosse, M.-A., Richard, F., He, X. & Simard, S. W. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21, 621–628 (2006).

    Article 

    Google Scholar 

  • Newman, E. Mycorrhizal links between plants—their functioning and ecological significance. Adv. Ecol. Res. 18, 243–270 (1988).

    Article 

    Google Scholar 

  • Bonello, P., Bruns, T. D. & Gardes, M. Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytol. 138, 533–542 (1998).

    Article 
    CAS 

    Google Scholar 

  • Dahlberg, A. & Stenlid, J. Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol. 128, 225–234 (1994).

    Article 

    Google Scholar 

  • Kretzer, A. M., Dunham, S., Molina, R. & Spatafora, J. W. Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol. 161, 313–320 (2004).

    Article 
    CAS 

    Google Scholar 

  • Figueiredo, A. F., Boy, J. & Guggenberger, G. Common mycorrhizae network: a review of the theories and mechanisms behind underground interactions. Front. Fungal Biol. 2, https://doi.org/10.3389/ffunb.2021.735299 (2021).

  • Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).

    Article 

    Google Scholar 

  • Trappe, J. M. & Fogel, R. in The Belowground Ecosystem: a Synthesis of Plant-Associated Processes (ed. Marshall J. K.) 205–214 (Colorado State Univ., 1977).

  • Beiler, K. J., Durall, D. M., Simard, S. W., Maxwell, S. A. & Kretzer, A. M. Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol. 185, 543–553 (2010).

    Article 
    CAS 

    Google Scholar 

  • Beiler, K. J., Simard, S. W. & Durall, D. M. Topology of tree–mycorrhizal fungus interaction networks in xeric and mesic Douglas-fir forests. J. Ecol. 103, 616–628 (2015).

    Article 

    Google Scholar 

  • Beiler, K. J., Simard, S. W., LeMay, V. & Durall, D. M. Vertical partitioning between sister species of Rhizopogon fungi on mesic and xeric sites in an interior Douglas-fir forest. Mol. Ecol. 21, 6163–6174 (2012).

    Article 

    Google Scholar 

  • Lian, C., Narimatsu, M., Nara, K. & Hogetsu, T. Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities. New Phytol. 171, 825–836 (2006).

    Article 

    Google Scholar 

  • Van Dorp, C. H., Simard, S. W. & Durall, D. M. Resilience of Rhizopogon–Douglas-fir mycorrhizal networks 25 years after selective logging. Mycorrhiza 30, 467–474 (2020).

    Article 

    Google Scholar 

  • Cazzolla Gatti, R. et al. The number of tree species on Earth. Proc. Natl Acad. Sci. USA 119, e2115329119 (2022).

    Article 

    Google Scholar 

  • Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).

    Article 

    Google Scholar 

  • Setälä, H. Growth of birch and pine seedlings in relation to grazing by soil fauna on ectomycorrhizal fungi. Ecology 76, 1844–1851 (1995).

    Article 

    Google Scholar 

  • Kanters, C., Anderson, I. C. & Johnson, D. Chewing up the wood-wide web: selective grazing on ectomycorrhizal fungi by collembola. Forests 6, 2560–2570 (2015).

    Article 

    Google Scholar 

  • Horton, T. R., Bruns, T. D. & Parker, V. T. Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can. J. Bot. 77, 93–102 (1999).

    Google Scholar 

  • Kennedy, P. G., Izzo, A. D. & Bruns, T. D. There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J. Ecol. 91, 1071–1080 (2003).

    Article 

    Google Scholar 

  • Kennedy, P. G., Smith, D. P., Horton, T. R. & Molina, R. J. Arbutus menziesii (Ericaceae) facilitates regeneration dynamics in mixed evergreen forests by promoting mycorrhizal fungal diversity and host connectivity. Am. J. Bot. 99, 1691–1701 (2012).

    Article 

    Google Scholar 

  • Horton, T. R., Molina, R. & Hood, K. Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock. Mycorrhiza 15, 393–403 (2005).

    Article 
    CAS 

    Google Scholar 

  • Buscardo, E. et al. Is the potential for the formation of common mycorrhizal networks influenced by fire frequency? Soil Biol. Biochem. 46, 136–144 (2012).

    Article 
    CAS 

    Google Scholar 

  • Hewitt, R. E., Chapin, F. S. III, Hollingsworth, T. N. & Taylor, D. L. The potential for mycobiont sharing between shrubs and seedlings to facilitate tree establishment after wildfire at Alaska arctic treeline. Mol. Ecol. 26, 3826–3838 (2017).

    Article 

    Google Scholar 

  • Jia, S., Nakano, T., Hattori, M. & Nara, K. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan. Mycorrhiza 27, 733–745 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hortal, S. et al. Beech roots are simultaneously colonized by multiple genets of the ectomycorrhizal fungus Laccaria amethystina clustered in two genetic groups. Mol. Ecol. 21, 2116–2129 (2012).

    Article 
    CAS 

    Google Scholar 

  • Wadud, M. A., Nara, K., Lian, C., Ishida, T. A. & Hogetsu, T. Genet dynamics and ecological functions of the pioneer ectomycorrhizal fungi Laccaria amethystina and Laccaria laccata in a volcanic desert on Mount Fuji. Mycorrhiza 24, 551–563 (2014).

    Article 

    Google Scholar 

  • Germain, S. J. & Lutz, J. A. Shared friends counterbalance shared enemies in old forests. Ecology 102, e03495 (2021).

    Article 

    Google Scholar 

  • Simard, S. W. et al. Partial retention of legacy trees protect mycorrhizal inoculum potential, biodiversity, and soil resources while promoting natural regeneration of interior Douglas-fir. Front. For. Glob. Change 3, https://doi.org/10.3389/ffgc.2020.620436 (2021).

  • Björkman, E. Monotropa hypopitys L.—an epiparasite on tree roots. Physiol. Plant. 13, 308–327 (1960).

    Article 

    Google Scholar 

  • Simard, S. W. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).

    Article 
    CAS 

    Google Scholar 

  • Read, D. The ties that bind. Nature 388, 517–518 (1997).

    Article 
    CAS 

    Google Scholar 

  • Aleklett, K. & Boddy, L. Fungal behaviour: a new frontier in behavioural ecology. Trends Ecol. Evol. 36, 787–796 (2021).

    Article 

    Google Scholar 

  • Franklin, O., Näsholm, T., Högberg, P. & Högberg, M. N. Forests trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbiosis. New Phytol. 203, 657–666 (2014).

    Article 
    CAS 

    Google Scholar 

  • Hasselquist, N. J. et al. Greater carbon allocation to mycorrhizal fungi reduces tree nitrogen uptake in a boreal forest. Ecology 97, 1012–1022 (2016).

    Google Scholar 

  • Näsholm, T. et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol. 198, 214–221 (2013).

    Article 

    Google Scholar 

  • Hoeksema, J. D. in Mycorrhizal Networks (ed. Horton, T. R.) 255–277 (Springer Netherlands, 2015).

  • Teste, F. P. & Simard, S. W. Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia 158, 193–203 (2008).

    Article 

    Google Scholar 

  • Teste, F. P., Simard, S. W., Durall, D. M., Guy, R. D. & Berch, S. M. Net carbon transfer between Pseudotsuga menziesii var. glauca seedlings in the field is influenced by soil disturbance. J. Ecol. 98, 429–439 (2010).

    Article 
    CAS 

    Google Scholar 

  • Teste, F. P. et al. Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90, 2808–2822 (2009).

    Article 

    Google Scholar 

  • Lerat, S. et al. 14C transfer between the spring ephemeral Erythronium americanum and sugar maple saplings via arbuscular mycorrhizal fungi in natural stands. Oecologia 132, 181–187 (2002).

    Article 

    Google Scholar 

  • Klein, T., Siegwolf, R. T. W. & Korner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).

    Article 
    CAS 

    Google Scholar 

  • He, X., Bledsoe, C. S., Zasoski, R. J., Southworth, D. & Horwath, W. R. Rapid nitrogen transfer from ectomycorrhizal pines to adjacent ectomycorrhizal and arbuscular mycorrhizal plants in a California oak woodland. New Phytol. 170, 143–151 (2006).

    Article 
    CAS 

    Google Scholar 

  • Schoonmaker, A. L., Teste, F. P., Simard, S. W. & Guy, R. D. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings. Oecologia 154, 455–466 (2007).

    Article 

    Google Scholar 

  • Warren, J. M., Brooks, J. R., Meinzer, F. C. & Eberhart, J. L. Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol. 178, 382–394 (2008).

    Article 
    CAS 

    Google Scholar 

  • Bingham, M. A. & Simard, S. W. Seedling genetics and life history outweigh mycorrhizal network potential to improve conifer regeneration under drought. For. Ecol. Manag. 287, 132–139 (2013).

    Article 

    Google Scholar 

  • Kranabetter, J. M. Understory conifer seedling response to a gradient of root and ectomycorrhizal fungal contact. Can. J. Bot. 83, 638–646 (2005).

    Article 

    Google Scholar 

  • Liang, M. et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat. Commun. 11, 2636 (2020).

    Article 
    CAS 

    Google Scholar 

  • Liang, M. et al. Soil fungal networks moderate density-dependent survival and growth of seedlings. New Phytol. 230, 2061–2071 (2021).

    Article 

    Google Scholar 

  • McGuire, K. L. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88, 567–574 (2007).

    Article 

    Google Scholar 

  • Pec, G. J., Simard, S. W., Cahill, J. F. & Karst, J. The effects of ectomycorrhizal fungal networks on seedling establishment are contingent on species and severity of overstorey mortality. Mycorrhiza 30, 173–183 (2020).

    Article 

    Google Scholar 

  • Corrales, A., Mangan, S. A., Turner, B. L. & Dalling, J. W. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol. Lett. 19, 383–392 (2016).

    Article 

    Google Scholar 

  • Booth, M. G. Mycorrhizal networks mediate overstorey–understorey competition in a temperate forest. Ecol. Lett. 7, 538–546 (2004).

    Article 

    Google Scholar 

  • Booth, M. G. & Hoeksema, J. D. Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology 91, 2294–2302 (2010).

    Article 

    Google Scholar 

  • Brearley, F. Q. et al. Testing the importance of a common ectomycorrhizal network for dipterocarp seedling growth and survival in tropical forests of Borneo. Plant Ecol. Divers. 9, 563–576 (2016).

    Article 

    Google Scholar 

  • Dehlin, H. et al. Tree seedling performance and below-ground properties in stands of invasive and native tree species. N. Z. J. Ecol. 32, 67–79 (2008).

    Google Scholar 

  • Newbery, D. M. & Neba, G. A. Micronutrients may influence the efficacy of ectomycorrhizas to support tree seedlings in a lowland African rain forest. Ecosphere 10, e02686 (2019).

    Article 

    Google Scholar 

  • Oliveira, I. R. et al. Nutrient deficiency enhances the rate of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus trees in mixed-species plantations. For. Ecol. Manag. 491, 119192 (2021).

    Article 

    Google Scholar 

  • Paula, R. R. et al. Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol. Biochem. 91, 99–108 (2015).

    Article 
    CAS 

    Google Scholar 

  • Nygren, P. & Leblanc, H. A. Dinitrogen fixation by legume shade trees and direct transfer of fixed N to associated cacao in a tropical agroforestry system. Tree Physiol. 35, 134–147 (2015).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y., Chen, H. & Mou, P. Spatial patterns nitrogen transfer models of ectomycorrhizal networks in a Mongolian scotch pine plantation. J. For. Res. 29, 339–346 (2018).

    Article 
    CAS 

    Google Scholar 

  • Bingham, M. A. & Simard, S. Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems 15, 188–199 (2012).

    Article 
    CAS 

    Google Scholar 

  • Robinson, D. & Fitter, A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J. Exp. Bot. 50, 9–13 (1999).

    Article 
    CAS 

    Google Scholar 

  • Chen, W., Koide, R. T. & Eissenstat, D. M. Root morphology and mycorrhizal type strongly influence root production in nutrient hot spots of mixed forests. J. Ecol. 106, 148–156 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jones, M. D., Durall, D. M. & Tinker, P. B. A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol. 140, 125–134 (1998).

    Article 

    Google Scholar 

  • Pickles, B. J. et al. Transfer of 13C between paired Douglas-fir seedlings reveals plant kinship effects and uptake of exudates by ectomycorrhizas. New Phytol. 214, 400–411 (2017).

    Article 
    CAS 

    Google Scholar 

  • Teste, F. P., Simard, S. W. & Durall, D. M. Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecol. 2, 21–30 (2009).

    Article 

    Google Scholar 

  • Bingham, M. A. & Simard, S. W. Mycorrhizal networks affect ectomycorrhizal fungal community similarity between conspecific trees and seedlings. Mycorrhiza 22, 317–326 (2012).

    Article 

    Google Scholar 

  • Pec, G. J. et al. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak. New Phytol. 213, 864–873 (2017).

    Article 
    CAS 

    Google Scholar 

  • Coomes, D. A. & Grubb, P. J. Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol. Monogr. 70, 171–207 (2000).

    Article 

    Google Scholar 

  • Finlay, R. D. & Read, D. J. The structure and function of the vegetative mycelium of ectomycorrhizal plants. New Phytol. 103, 143–156 (1986).

    Article 

    Google Scholar 

  • Brownlee, C., Duddridge, J. A., Malibari, A. & Read, D. J. The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71, 433–443 (1983).

    Article 

    Google Scholar 

  • Wu, B., Nara, K. & Hogetsu, T. Can 14C-labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol. 149, 137–146 (2001).

    Article 
    CAS 

    Google Scholar 

  • Anten, N. P. R. & Chen, B. J. W. Detect thy family: mechanisms, ecology and agricultural aspects of kin recognition in plants. Plant Cell Environ. 44, 1059–1071 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dominguez, P. G. & Niittylä, T. Mobile forms of carbon in trees: metabolism and transport. Tree Physiol. 42, 458–487 (2021).

    Article 

    Google Scholar 

  • Yu, R.-P., Lambers, H., Callaway, R. M., Wright, A. J. & Li, L. Belowground facilitation and trait matching: two or three to tango. Trends Plant Sci. 26, 1227–1235 (2021).

    Article 
    CAS 

    Google Scholar 

  • Simard, S. W. in The Word for World is Still Forest (eds Springer, A. & Turpin, E.) 66–72 (K Verlag and Haus der Kulturen der Welt, 2017).

  • Simard, S. W. in Memory and Learning in Plants (eds Baluska, F. et al.) 191–213 (Springer, 2018).

  • Boyno, G. & Demir, S. Plant–mycorrhiza communication and mycorrhizae in inter-plant communication. Symbiosis 86, 155–168 (2022).

    Article 

    Google Scholar 

  • Rasheed, M. U., Brosset, A. & Blande, J. D. Tree communication: the effects of “wired” and “wireless” channels on interactions with herbivores. Curr. For. Rep. 9, 33–47 (2023).

    Google Scholar 

  • Song, Y. Y., Simard, S. W., Carroll, A., Mohn, W. W. & Zeng, R. S. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks. Sci. Rep. 5, 8495 (2015).

    Article 
    CAS 

    Google Scholar 

  • Gorzelak, M. A. Kin-Selected Signal Transfer Through Mycorrhizal Networks in Douglas-Fir. PhD thesis, Univ. British Columbia (2017).

  • Asay, A. K. Mycorrhizal Facilitation of Kin Recognition in Interior Douglas-Fir (Pseudotsuga menziesii var. glauca). MSc thesis, Univ. British Columbia (2013).

  • Orrego, G. Western Hemlock Regeneration on Coarse Woody Debris is Facilitated by Linkage into a Mycorrhizal Network in an Old-Growth Forest. MSc thesis, Univ. British Columbia (2018).

  • Diédhiou, A. G. et al. Multi-host ectomycorrhizal fungi are predominant in a Guinean tropical rainforest and shared between canopy trees and seedlings. Environ. Microbiol. 12, 2219–2232 (2010).

    Google Scholar 

  • Grelet, G.-A. et al. New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol. 188, 210–222 (2010).

    Article 
    CAS 

    Google Scholar 

  • Van der Heijden, M. G. A. & Horton, T. R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 97, 1139–1150 (2009).

    Article 

    Google Scholar 

  • Babikova, Z., Johnson, D., Bruce, T., Pickett, J. & Gilbert, L. Underground allies: how and why do mycelial networks help plants defend themselves? BioEssays 36, 21–26 (2014).

    Article 

    Google Scholar 

  • Alaux, P.-L., Zhang, Y., Gilbert, L. & Johnson, D. Can common mycorrhizal fungal networks be managed to enhance ecosystem functionality? Plants People Planet 3, 433–444 (2021).

    Article 

    Google Scholar 

  • Simard, S. W. et al. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol. Rev. 26, 39–60 (2012).

    Article 

    Google Scholar 

  • Flinn, K. The idea that trees talk to cooperate is misleading. Scientific American https://www.scientificamerican.com/article/the-idea-that-trees-talk-to-cooperate-is-misleading/ (2021).

  • Högberg, P. & Högberg, M. N. Does successful forest regeneration require the nursing of seedlings by nurse trees through mycorrhizal interconnections. For. Ecol. Manag. 516, 120252 (2022).

    Article 

    Google Scholar 

  • Teste, F. P., Jones, M. D. & Dickie, I. A. Dual-mycorrhizal plants: their ecology and relevance. New Phytol. 225, 1835–1851 (2020).

    Article 

    Google Scholar 

  • Toju, H., Guimarães, P. R., Olesen, J. M. & Thompson, J. N. Assembly of complex plant–fungus networks. Nat. Commun. 5, 5273 (2014).

    Article 
    CAS 

    Google Scholar 

  • Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis 3rd edn (Elsevier, 2008).

  • Nara, K. Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol. 169, 169–178 (2006).

    Article 
    CAS 

    Google Scholar 

  • Arnebrant, K., Ek, H., Finlay, R. D. & Söderström, B. Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug, ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol. 124, 231–242 (1993).

    Article 

    Google Scholar 

  • Finlay, R. D. Functional aspects of phosphorus uptake and carbon translocation in incompatible ectomycorrhizal associations between Pinus sylvestris and Suillus grevillei and Boletinus cauipes. New Phytol. 112, 185–192 (1989).

    Article 
    CAS 

    Google Scholar 

  • Cahanovitc, R., Livne-Luzon, S., Angel, R. & Klein, T. Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. ISME J. 16, 1420–1429 (2022).

    Article 
    CAS 

    Google Scholar 

  • Teste, F. P., Veneklass, E. J., Dixon, K. W. & Lambers, H. Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies? Plant Cell Environ. 38, 50–60 (2015).

    Article 
    CAS 

    Google Scholar 

  • Simard, S. W. et al. Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytol. 137, 529–542 (1997).

    Article 
    CAS 

    Google Scholar 

  • Egerton-Warburton, L. M., Querejeta, J. I. & Allen, M. F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J. Exp. Bot. 58, 1473–1483 (2007).

    Article 
    CAS 

    Google Scholar 

  • He, X., Critchley, C., Ng, H. & Bledsoe, C. Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp. using 15NH4+ or 15NO3 supplied as ammonium nitrate. New Phytol. 167, 897–912 (2005).

    Article 
    CAS 

    Google Scholar 

  • He, X., Critchley, C., Ng, H. & Bledsoe, C. Reciprocal N (15NH4+ or 15NO3) transfer between nonN2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol. 163, 629–640 (2004).

    Article 

    Google Scholar 

  • Bingham, M. A. & Simard, S. W. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir seedlings increase with soil moisture stress? Ecol. Evol. 1, 306–316 (2011).

    Article 

    Google Scholar 

  • Babikova, Z. et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16, 835–843 (2013).

    Article 

    Google Scholar 

  • Birch, J. D., Simard, S. W., Beiler, K. J. & Karst, J. Beyond seedlings: ectomycorrhizal fungal networks and growth of mature Pseudotsuga menziesii. J. Ecol. 109, 806–818 (2021).

    Article 
    CAS 

    Google Scholar 

  • Färkkilä, S. M. A. et al. Fluorescent nanoparticles as tools in ecology and physiology. Biol. Rev. 96, 2392–2424 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Soil, leaf and fruit nutrient data for pear orchards located in the Circum-Bohai Bay and Loess Plateau regions

    Adjusting time-of-day and depth of fishing provides an economically viable solution to seabird bycatch in an albacore tuna longline fishery