in

Impending anthropogenic threats and protected area prioritization for jaguars in the Brazilian Amazon

  • Estes, J. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article 
    CAS 

    Google Scholar 

  • Ripple, W. J. et al. Status and ecological effects of the World’s Largest Carnivores. Science 343, 151–162 (2014).

    Article 
    CAS 

    Google Scholar 

  • Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).

    Article 
    CAS 

    Google Scholar 

  • De La Torre, J. A., González-Maya, J. F., Zarza, H., Ceballos, G. & Medellín, R. A. The jaguar’s spots are darker than they appear: assessing the global conservation status of the jaguar (Panthera onca). Oryx 52, 300–315 (2018).

    Article 

    Google Scholar 

  • Lindsey, P. A. et al. The performance of African protected areas for lions and their prey. Biol. Conserv. 209, 137–149 (2017).

    Article 

    Google Scholar 

  • Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).

    Article 

    Google Scholar 

  • Sanderson, E. W. et al. Planning to save a species: the jaguar as a model. Conserv. Biol. 16, 58–72 (2002).

    Article 

    Google Scholar 

  • Rabinowitz, A. & Zeller, K. A. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol. Conserv. 143, 939–945 (2010).

    Article 

    Google Scholar 

  • Woodroffe, R. Predators and people: using human densities to interpret declines of large carnivores. Anim. Conserv. 3, 165–173 (2000).

    Article 

    Google Scholar 

  • Crooks, K. R. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502 (2002).

    Article 

    Google Scholar 

  • Ferreira, A. S., Peres, C. A., Bogoni, J. A. & Cassano, C. G. Use of agroecosystem matrix habitats by mammalian carnivores (Carnivora): a global-scale analysis. Mammal Rev. https://doi.org/10.1111/mam12137 (2018).

  • Thompson, J. J. et al. Range-wide factors shaping space use and movements by the Neotropic’s flagship predator: the jaguar. Curr. Biol. https://doi.org/10.1016/jcub202106029 (2021).

  • Sunquist, M. & Sunquist, F. Wild Cats of the World. University of Chicago Press (2002).

  • Leader-Williams, N. & Dublin, H. T. in Priorities for The Conservation Of Mammalian Diversity: Has The Panda Had Its Day? (eds. Entwistle, A., Dunstone, N.) 53−81 (Cambridge University Press, 2000).

  • Thornton, D. et al. Assessing the umbrella value of a range-wide conservation network for jaguars (Panthera onca). Ecol. Appl. 26, 1112–1124 (2015).

    Article 

    Google Scholar 

  • Olsoy, P. J. et al. Quantifying the effects of deforestation and fragmentation on a range-wide conservation plan for jaguars. Biol. Conserv. 203, 8–16 (2016).

    Article 

    Google Scholar 

  • Morato, R. G., Beisiegel, B. M., Ramalho, E. E. & Boulhosa, R. L. P. Avaliação do risco de extinção da Onça-pintada Panthera onca (Linnaeus, 1758) no Brasil. Biodivers. Brasil. 3, 122–132 (2013).

    Google Scholar 

  • Hunter, L. Carnivores of the World. Princeton Univ Press (2011).

  • Morato, R. G. et al. Space use and movement of a neotropical top predator: The Endangered Jaguar. PLoS ONE 11, e0168176 (2016).

    Article 

    Google Scholar 

  • Eriksson, C. E. et al. Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. Ecology 103, e03543 (2022).

    Article 

    Google Scholar 

  • Chapman, B. et al. in Animal Movement Across Scales 1st edn. (eds. Hansson, L-A, Akesson, S.) 11–30 (Oxford University Press, 2014).

  • Quigley, H. et al. Panthera onca. (errata version published in 2018). The IUCN Red List of Threatened Species 2017:e.T15953A123791436. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T15953A50658693.en (2017).

  • Paviolo, A. et al. A biodiversity hotspot losing its top predator: the challenge of jaguar conservation in the Atlantic Forest of South America. Sci. Rep. 6, 37147 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tobler, M. W., Carillo-Perscastegui, S. E., Hartley, A. Z. & Powell, G. V. N. High jaguar densities and large population sizes in the core habitat of the southwestern Amazon. Biol. Conserv. 159, 375–381 (2013).

    Article 

    Google Scholar 

  • Jędrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution: application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).

    Article 

    Google Scholar 

  • Eva, H. D. et al. A proposal for defining the geographical boundaries of Amazonia; synthesis of the results from an expert consultation workshop organized by the European Commission in collaboration with the Amazon Cooperation Treaty Organization-JRC Ispra (No 21808-EN). https://core.ac.uk/download/pdf/38630683.pdf (2005).

  • Nepstad, D. C., Stickler, C. M., Soares-Filho, B., Merry, F. & Nin, E. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B 363, 1737–1746 (2008).

    Article 

    Google Scholar 

  • Marques, A. A. B., Schneider, M. & Peres, C. A. Human population and socioeconomic modulators of conservation performance in 788 Amazonian and Atlantic Forest reserves. PeerJ 4, pe2206 (2016).

    Article 

    Google Scholar 

  • Jaguar 2030 Roadmap. Regional plan to save America’s largest cat and its ecosystems. https://www.internationaljaguarday.org/jaguar-conservation-roadmap (2018).

  • Sanderson, E. W. et al. A systematic review of potential habitat suitability for the jaguar Panthera onca in central Arizona and New Mexico, USA. Oryx 2021, 1–12 (2021).

    Google Scholar 

  • Simberloff, D. Flagships, umbrellas, and keystones: is single-species management passe’ in the landscape era. Biol. Conserv. 83, 247–57 (1998).

    Article 

    Google Scholar 

  • Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native Cerrado and exotic pasture grasses. Philos. Trans. R. Soc. B 368, 20120427 (2013).

    Article 

    Google Scholar 

  • Brazil’s National Institute for Space Research (INPE). Banco de dados de Queimadas INPE—Programa Queimadas. http://queimadasdgiinpebr/queimadas/bdqueimadas (2020b).

  • Silva-Jr, C. H. L. et al. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 5, 144–145 (2020).

    Article 

    Google Scholar 

  • Walker, R. et al. Protecting the Amazon with protected areas. Proc. Natl Acad. Sci. USA 106, 10582–10586 (2009).

    Article 
    CAS 

    Google Scholar 

  • Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).

    Article 
    CAS 

    Google Scholar 

  • Begotti, R. A. & Peres, C. A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy 96, 104694 (2020).

    Article 

    Google Scholar 

  • Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl Acad. Sci. USA 117, 3015–3025 (2020).

    Article 
    CAS 

    Google Scholar 

  • Moilanen, A., Arponen, A., Stokland, J. N. & Cabeza, M. Assessing replacement cost of conservation areas: How does habitat loss influence priorities? Biol. Conserv. 142, 575–585 (2009).

    Article 

    Google Scholar 

  • Almeida-Rocha, J. A. & Peres, C. A. Nominally protected buffer zones around tropical protected areas are as highly degraded as the wider unprotected countryside. Biol. Conserv. 256, 109068 (2021).

    Article 

    Google Scholar 

  • Terborgh, J. The role of felid predators in Neotropical Forests. Vida Silv. Neotrop. 2, 3–5 (1990).

    Google Scholar 

  • Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).

    Article 
    CAS 

    Google Scholar 

  • Brando, P. M. et al. The gathering firestorm in southern Amazonia. Sci. Adv. 6, 1632 (2020).

  • Convention on the Conservation of Migratory Species of Wild Animals (CMS). Proposal for the Inclusion of the Jaguar in Appendices I and II of the Convention. https://www.cms.int/en/document/proposal-inclusion-jaguar-appendices-i-and-ii-convention (2022).

  • Ceddia, M. G., Bardsley, N. O., Gomez-y-Paloma, S. & Sedlacek, S. Governance, agricultural intensification, and land sparing in tropical South America. Proc. Natl Acad. Sci. USA 111, 7242–7247 (2014).

  • Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20, 1251–1261 (2006).

    Article 

    Google Scholar 

  • Brancalion, P. H. S. et al. Análise crítica da Lei de Proteção da Vegetação Nativa (2012), que substituiu o antigo Código Florestal: atualizações e ações em curso. Natureza Conservação 14, 1–16 (2016).

  • Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).

    Article 

    Google Scholar 

  • Bogoni, J. A., Peres, C. A. & Ferraz, K. M. P. M. B. Extent, intensity and drivers of mammal defaunation: a continental-scale analysis across the Neotropics. Sci. Rep. 10, 14750 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ferrante, L. & Fearnside, P. M. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).

    Article 

    Google Scholar 

  • Aragão, L. E. O. C. & Shimabukuro, Y. E. The incidence of fire in Amazonian forests with implications for REDD. Science 328, 1275–1278 (2010).

    Article 

    Google Scholar 

  • Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philos. Trans. R. Soc. B 363, 1787 (2008).

    Article 

    Google Scholar 

  • Michalski, F., Boulhosa, R. L. P., Faria, A. & Peres, C. A. Human–wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredation on livestock. Anim. Conserv. https://doi.org/10.1111/j1469-1795200600025x (2006).

    Article 

    Google Scholar 

  • Jorge, M. L. S. P., Galetti, M., Ribeiro, M. C. & Ferraz, K. M. P. M. B. Mammal defaunation as surrogate of trophic cascades in a biodiversity hotspot. Biol. Conserv. 163, 49–57 (2013).

    Article 

    Google Scholar 

  • Menezes, J. F. S., Tortato, F. R., Roque, F. O., Oliveira-Santos, L. G. & Morato, R. G. Deforestation, fires, and lack of governance are displacing thousands of jaguars in Brazilian Amazon. Conserv. Sci. Pract. 3, e477 (2021).

  • Morato, R. G. et al. Resource selection in an apex predator and variation in response to local landscape characteristics. Biol. Conserv. 228, 233–240 (2018).

    Article 

    Google Scholar 

  • Romero-Muñoz, A. et al. Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Divers. Distrib. 25, 176–190 (2018).

  • Romero-Muñoz, A., Morato, R. G., Tortato, F. & Kuemmerle, T. Beyond fangs: beef and soybean trade drive jaguar extinction. Front. Ecol. Environ. 18, 67–68 (2020).

    Article 

    Google Scholar 

  • Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl Acad. Sci. USA 117, 7095–7102 (2020).

    Article 
    CAS 

    Google Scholar 

  • Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).

    Article 

    Google Scholar 

  • Carter, N., Killion, A., Easter, T., Brandt, J. & Ford, A. Road development in Asia: assessing the range-wide risks to tigers. Sci. Adv. 6, eaaz9619 (2020).

    Article 

    Google Scholar 

  • Abra, F. D. et al. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state, Brazil. PLoS ONE 14, e0215152 (2019).

    Article 
    CAS 

    Google Scholar 

  • Joshi, A. R. et al. Tracking changes and preventing loss in critical tiger habitat. Sci. Adv. 2, e1501675 (2016).

    Article 

    Google Scholar 

  • Peres, C. A. & Terborgh, J. Amazonian nature reserves: an analysis of the defensibility status of existing conservation units and design criteria for the future. Conserv. Biol. 9, 34–46 (1995).

    Article 

    Google Scholar 

  • Sistema Nacional de Unidades de Conservação (SNUC). Lei 9985 de 18 de julho de 2000; Ministério do Meio Ambiente. (2000).

  • Stocks, A. Too much for too few: problems of indigenous land rights in Latin America Annual. Rev. Anthropol. 34, 85–104 (2005).

    Article 

    Google Scholar 

  • Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS ONE 3, e3700 (2008).

    Article 

    Google Scholar 

  • Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).

    Article 
    CAS 

    Google Scholar 

  • Miranda, E. B. P. et al. Tropical deforestation induces thresholds of reproductive viability and habitat suitability in Earth’s largest eagles. Sci. Rep. 11, 1–17 (2021).

    Article 

    Google Scholar 

  • Bowman, K. W. et al. Environmental degradation of indigenous protected areas of the Amazon as a slow onset event. Curr. Opin. Environ. Sustain. 50, 260–271 (2021).

    Article 

    Google Scholar 

  • Wilson, K. A., Carwardine, J. & Possingham, H. P. Setting conservation priorities. Ann. N. Y. Acad. Sci. 1162, 237–264 (2009).

    Article 

    Google Scholar 

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    Article 
    CAS 

    Google Scholar 

  • Sales, L. P., Galetti, M. & Pires, M. M. Climate and land‐use change will lead to a faunal “savannization” on tropical rainforests. Glob. Change Biol. 26, 7036–7044 (2020).

    Article 

    Google Scholar 

  • da Silva, J. M. C., Dias, T. C. A. C., da Cunha, A. C. & Cunha, H. F. A. Funding deficits of protected areas in Brazil. Land Use Policy 100, 104926 (2021).

    Article 

    Google Scholar 

  • Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kauano, E. E., Silva, J. M. C. & Michalski, F. Illegal use of natural resources in federal protected areas of the Brazilian Amazon. PeerJ 5, e3902 (2017).

    Article 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2011).

    Article 

    Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística (IBGE). Censo demográfico Rio de Janeiro. http://www.ibge.gov.br (2020).

  • Instituto Brasileiro de Geografia e Estatística (IBGE). Censo demográfico Rio de Janeiro. http://www.ibge.gov.br (2010).

  • Instituto Brasileiro de Geografia e Estatística (IBGE). BC250—Base Cartográfica Contínua do Brasil—1:250,000—2017 Diretoria de Geociências—DGC / Coordenação de Cartografia—CCAR. http://www.metadadosgeoibgegovbr/geonetwork_ibge/srv/por/metadatashow?uuid=5a47e9ea-e2cd-423b-8646-53f67ff4ed2d (2017).

  • MapBiomas. Projeto MapBiomas Coleção 5 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. https://mapbiomas.org/colecoes-mapbiomas-1 (2019).

  • Brazil’s National Institute for Space Research (INPE). Monitoramento do Desmatamento da Floresta Amazônica Brasileira por Satélite. http://www.obtinpebr/OBT/assuntos/programas/amazonia/prodes (2020a).

  • ESRI. ArcGIS Desktop: Release 10 Redlands. (Environmental Systems Research Institute, 2019).

  • Ministério do Meio Ambiente (MMA). Cadastro Nacional de Unidades de Conservação (CNUC). https://antigo.mma.gov.br/areas-protegidas/cadastro-nacional-de-ucs/dados-georreferenciados.html (2019).

  • Fundação Nacional dos Povos Indígenas (FUNAI). Modalidades de Terra Indígenas. http://www.funaigovbr/indexphp/indios-no-brasil/terras-indigenas (2019).

  • Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).

    Article 

    Google Scholar 

  • de Oliveira, T. G. et al. Red list assessment of the jaguar in Brazilian Amazonia. CatNews 7, 8–13 (2012).

    Google Scholar 

  • Ramalho, F. B. L. Jaguar (Panthera Onca) Population Dynamics, Feeding Ecology, Human Induced Mortality, and Conservation in the Várzea Floodplain Forests of Amazonia. PhD Thesis. (University of São Paulo, 2012).

  • Duarte, H. O. B., Boron, V., Carvalho, W. D. & Toledo, J. J. Amazon islands as predator refugia: jaguar density and temporal activity in Maracá-Jipioca. J. Mammal. 103, 440–446 (2022).

    Article 

    Google Scholar 

  • Zar, J. H. Biostatistical Analysis 4th edn., (Pretince-Hall, 1999).

  • Medellín, R. A. et al. El jaguar en el nuevo milenio. Fondo de Cultura Económica (Universidad Nacional Autónoma de México, Wildlife Conservation Society, 2002).

  • Quigley, H. et al. Observations and preliminary testing of Jaguar depredation reduction techniques in and between core Jaguar populations. Parks 21, 63–72 (2015).

    Article 

    Google Scholar 

  • Bogoni, J. A., Ferraz, K. M. P. M. B. & Peres, C. A. Continental-scale local extinctions in mammal assemblages are synergistically induced by habitat loss and hunting pressure. Biol. Conserv. 272, 109635 (2022).

    Article 

    Google Scholar 

  • Valsecchi, J., Monteiro, M. C., Alvarenga, G. C., Lemos, L. P. & Ramalho, E. E. Community-based monitoring of wild felid hunting in Central Amazonia. Animal Conser. https://zslpublications.onlinelibrary.wiley.com/doi/pdf/10.1111/acv.12811 (2022).

  • WWF. WWF Jaguar Strategy 2020–2030. https://wwflac.awsassets.panda.org/downloads/estrategia_jaguar_2020_2030_wwf.pdf (2020).

  • Chape, S., Harrison, J., Spalding, M. D. & Lysenko, I. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 443–455 (2005).

    Article 
    CAS 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).

  • Souza-Jr, C. M. et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 12, 2735 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Responsive design meets responsibility for the planet’s future

    Featured video: Investigating our blue ocean planet