in

Genetic monitoring on the world’s first MSC eco-labeled common octopus (O. vulgaris) fishery in western Asturias, Spain

  • FAO. El estado mundial de la pesca y la acuicultura 2020 (FAO, 2020).

    Google Scholar 

  • Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scheffer, M., Carpenter, S. & de Young, B. Cascading effects of overfishing marine systems. Trends Ecol. Evol. 20, 579–581 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Coll, M., Libralato, S., Tudela, S., Palomera, I. & Pranovi, F. Ecosystem overfishing in the ocean. PLoS ONE 3, e3881 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peterson, M. S. & Lowe, M. R. Implications of cumulative impacts to estuarine and marine habitat quality for fish and invertebrate resources. Rev. Fish. Sci. 17, 505–523 (2009).

    Article 

    Google Scholar 

  • Claudet, J. & Fraschetti, S. Human-driven impacts on marine habitats: A regional meta-analysis in the Mediterranean Sea. Biol. Cons. 143, 2195–2206 (2010).

    Article 

    Google Scholar 

  • Smith, V. H., Tilman, G. D. & Nekola, J. C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100, 179–196 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Derraik, J. G. B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 44, 842–852 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).

    Article 

    Google Scholar 

  • Wojnarowska, M., Sołtysik, M. & Prusak, A. Impact of eco-labelling on the implementation of sustainable production and consumption. Environ. Impact Assess. Rev. 86, 106505 (2021).

    Article 

    Google Scholar 

  • Yan, H. F. et al. Overfishing and habitat loss drive range contraction of iconic marine fishes to near extinction. Sci. Adv. 7, 6026 (2021).

    Article 
    ADS 

    Google Scholar 

  • Bastardie, F. et al. Spatial planning for fisheries in the Northern Adriatic: Working toward viable and sustainable fishing. Ecosphere 8, e01696 (2017).

    Article 

    Google Scholar 

  • Arkema, K. K. et al. Integrating fisheries management into sustainable development planning. Ecol. Soc. 24, 0201 (2019).

    Article 

    Google Scholar 

  • Aguión, A. et al. Establishing a governance threshold in small-scale fisheries to achieve sustainability. Ambio. https://doi.org/10.1007/s13280-021-01606-x (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gudmundsson, E. & Wessells, C. R. Ecolabeling seafood for sustainable production: Implications for fisheries management. Mar. Resour. Econ. 15, 97–113 (2000).

    Article 

    Google Scholar 

  • FAO. Guidelines for the Ecolabelling of Fish and Fishery Products from Marine Capture Fisheries. Revision 1 (FAO, 2009).

    Google Scholar 

  • Hilborn, R. & Ovando, D. Reflections on the success of traditional fisheries management. ICES J. Mar. Sci. 71, 1040–1046 (2014).

    Article 

    Google Scholar 

  • Casey, J., Jardim, E. & Martinsohn, J. T. H. The role of genetics in fisheries management under the E.U. common fisheries policy. J. Fish Biol. 89, 2755–2767 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • MSC. MSC Fisheries Standard v2.01. https://www.msc.org/docs/default-source/default-document-library/for-business/program-documents/fisheries-program-documents/msc-fisheries-standard-v2-01.pdf?sfvrsn=8ecb3272_9 (2018).

  • Costello, C. et al. Status and solutions for the world’s unassessed fisheries. Science 338, 517–520 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. PNAS 117, 2218–2224 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Palomares, M. L. D. et al. Fishery biomass trends of exploited fish populations in marine ecoregions, climatic zones and ocean basins. Estuar. Coast. Shelf Sci. 243, 106896 (2020).

    Article 

    Google Scholar 

  • Ihssen, P. E. et al. Stock identification: Materials and methods. Can. J. Fish. Aquat. Sci. 38, 1838–1855 (1981).

    Article 

    Google Scholar 

  • Carvalho, G. R. & Hauser, L. Molecular genetics and the stock concept in fisheries. In Molecular Genetics in Fisheries (eds Carvalho, G. R. & Pitcher, T. J.) 55–79 (Springer, 1995).

    Chapter 

    Google Scholar 

  • Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gough, C. L. A., Dewar, K. M., Godley, B. J., Zafindranosy, E. & Broderick, A. C. Evidence of overfishing in small-scale fisheries in Madagascar. Front. Mar. Sci. 7, 317 (2020).

    Article 

    Google Scholar 

  • Widjaja, S. et al. Illegal, Unreported and Unregulated Fishing and Associated Drivers 60 (2020).

  • Walters, C. & Martell, S. J. D. Stock assessment needs for sustainable fisheries management. Bull. Mar. Sci. 70, 629–638 (2002).

    Google Scholar 

  • Moreira, A. A., Tomás, A. R. G. & Hilsdorf, A. W. S. Evidence for genetic differentiation of Octopus vulgaris (Mollusca, Cephalopoda) fishery populations from the southern coast of Brazil as revealed by microsatellites. J. Exp. Mar. Biol. Ecol. 407, 34–40 (2011).

    Article 

    Google Scholar 

  • Allendorf, F. W., Ryman, N. & Utter, F. M. Genetics and fishery management. In Population Genetics and Fishery Management 1–19 (1987).

  • Oosthuizen, A., Jiwaji, M. & Shaw, P. Genetic analysis of the Octopus vulgaris population on the coast of South Africa. S. Afr. J. Sci. 100, 603–607 (2004).

    CAS 

    Google Scholar 

  • Botsford, L. W., Castilla, J. C. & Peterson, C. H. The management of fisheries and marine ecosystems. Science 277, 509–515 (1997).

    Article 
    CAS 

    Google Scholar 

  • Hilborn, R., Orensanz, J. M. & Parma, A. M. Institutions, incentives and the future of fisheries. Philos. Trans. R. Soc. B Biol. Sci. 360, 47. https://doi.org/10.1098/rstb.2004.1569 (2005).

    Article 

    Google Scholar 

  • Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C. & Dichmont, C. M. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish. 16, 125–159 (2015).

    Article 

    Google Scholar 

  • Aguirre-Sarabia, I. et al. Evidence of stock connectivity, hybridization, and misidentification in white anglerfish supports the need of a genetics-informed fisheries management framework. Evol. Appl. 14, 2221 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grover, A. & Sharma, P. C. Development and use of molecular markers: Past and present. Crit. Rev. Biotechnol. 36, 290 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Valenzuela-Quiñonez, F. How fisheries management can benefit from genomics? Brief. Funct. Genom. 15, 352–357 (2016).

    Article 

    Google Scholar 

  • Khoufi, W., Jabeur, C. & Bakhrouf, A. Stock assessment of the common octopus (Octopus vulgaris) in Monastir; the Mid-eastern Coast of Tunisia. Int. J. Mar. Sci. 2, 1 (2012).

    Google Scholar 

  • Pita, C. et al. Fisheries for common octopus in Europe: Socioeconomic importance and management. Fish. Res. 235, 105820 (2021).

    Article 

    Google Scholar 

  • Melis, R. et al. Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia 807, 277–296 (2018).

    Article 
    CAS 

    Google Scholar 

  • De Luca, D., Catanese, G., Procaccini, G. & Fiorito, G. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic diversity and population structure. PLoS ONE 11, e0149496 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernández-Rueda, P. & García-Flórez, L. Octopus vulgaris (Mollusca: Cephalopoda) fishery management assessment in Asturias (north-west Spain). Fish. Res. 83, 351–354 (2007).

    Article 

    Google Scholar 

  • Gobierno del Principado de Asturias. BOPA núm. 233 de 03-XII-2021, Vol. 233 (2021).

  • Roa-Ureta, R. H. et al. Estimation of the spawning stock and recruitment relationship of Octopus vulgaris in Asturias (Bay of Biscay) with generalized depletion models: Implications for the applicability of MSY. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsab113 (2021).

    Article 

    Google Scholar 

  • González, A. F., Macho, G., de Novoa, J. & García, M. Western Asturias Octopus Traps Fishery of Artisanal Cofradías 181 (2015).

  • Sánchez, J. L. F., Fernández Polanco, J. M. & Llorente García, I. Evidence of price premium for MSC-certified products at fishers’ level: The case of the artisanal fleet of common octopus from Asturias (Spain). Mar. Policy 119, 104098 (2020).

    Article 

    Google Scholar 

  • Murphy, J. M., Balguerías, E., Key, L. N. & Boyle, P. R. Microsatellite DNA markers discriminate between two Octopus vulgaris (Cephalopoda: Octopoda) fisheries along the northwest African coast. Bull. Mar. Sci. 71, 545–553 (2002).

    Google Scholar 

  • Cabranes, C., Fernandez-Rueda, P. & Martínez, J. L. Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands as indicated by microsatellite DNA variation. ICES J. Mar. Sci. 65, 12–16 (2008).

    Article 

    Google Scholar 

  • Quinteiro, J., Rodríguez-Castro, J., Rey-Méndez, M. & González-Henríquez, N. Phylogeography of the insular populations of common octopus, Octopus vulgaris Cuvier, 1797, in the Atlantic Macaronesia. PLoS ONE 15, e0230294 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greatorex, E. C. et al. Microsatellite markers for investigating population structure in Octopus vulgaris (Mollusca: Cephalopoda). Mol. Ecol. 9, 641–642 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Luca, D., Catanese, G., Fiorito, G. & Procaccini, G. A new set of pure microsatellite loci in the common octopus Octopus vulgaris Cuvier, 1797 for multiplex PCR assay and their cross-amplification in O. maya Voss & Solís Ramírez, 1966. Conserv. Genet. Resour. 7, 299–301 (2015).

    Article 

    Google Scholar 

  • Zuo, Z., Zheng, X., Liu, C. & Li, Q. Development and characterization of 17 polymorphic microsatellite loci in Octopus vulgaris Cuvier, 1797. Conserv. Genet. Resour. 4, 367–369 (2012).

    Article 

    Google Scholar 

  • Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nei, M. & Takezaki, N. Estimation of Genetic Distances and Phylogenetic Trees from DNA Analysis 8 (1983).

  • Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Waples, R. S. Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species. J. Hered. 89, 438–450 (1998).

    Article 

    Google Scholar 

  • Taboada, F. G. & Anadón, R. Patterns of change in sea surface temperature in the North Atlantic during the last three decades: Beyond mean trends. Clim. Change 115, 419–431 (2012).

    Article 
    ADS 

    Google Scholar 

  • Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sinclair, M. & Valdimarsson, G. Responsible Fisheries in the Marine Ecosystem (CABI, 2003).

    Book 

    Google Scholar 

  • Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: The influence of geography, taxonomic category and life history. Proc. R. Soc. B Biol. Sci. 275, 1803–1809 (2008).

    Article 

    Google Scholar 

  • Waples, R. S. Testing for Hardy-Weinberg proportions: Have we lost the plot? J. Hered. 106, 1–19 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Casu, M. et al. Genetic structure of Octopus vulgaris (Mollusca, Cephalopoda) from the Mediterranean Sea as revealed by a microsatellite locus. Ital. J. Zool. 69, 295–300 (2002).

    Article 

    Google Scholar 

  • Fadhlaoui-Zid, K. et al. Genetic structure of Octopus vulgaris (Cephalopoda, Octopodidae) in the central Mediterranean Sea inferred from the mitochondrial COIII gene. C.R. Biol. 335, 625–636 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Queiroga, H. et al. Oceanographic and behavioural processes affecting invertebrate larval dispersal and supply in the western Iberia upwelling ecosystem. Prog. Oceanogr. 74, 174–191 (2007).

    Article 
    ADS 

    Google Scholar 

  • Mereu, M. et al. Mark–recapture investigation on Octopus vulgaris specimens in an area of the central western Mediterranean Sea. J. Mar. Biol. Assoc. U.K. 95, 131–138 (2015).

    Article 
    ADS 

    Google Scholar 

  • Mereu, M. et al. Movement estimation of Octopus vulgaris Cuvier, 1797 from mark recapture experiment. J. Exp. Mar. Biol. Ecol. 470, 64–69 (2015).

    Article 

    Google Scholar 

  • Roura, Á. et al. Life strategies of cephalopod paralarvae in a coastal upwelling system (NW Iberian Peninsula): Insights from zooplankton community and spatio-temporal analyses. Fish. Oceanogr. 25, 241–258 (2016).

    Article 

    Google Scholar 

  • Moreno, A. et al. Essential habitats for pre-recruit Octopus vulgaris along the Portuguese coast. Fish. Res. 152, 74–85 (2014).

    Article 
    ADS 

    Google Scholar 

  • Chédia, J., Widien, K. & Amina, B. Role of sea surface temperature and rainfall in determining the stock and fishery of the common octopus (Octopus vulgaris, Mollusca, Cephalopoda) in Tunisia. Mar. Ecol. 31, 431–438 (2010).

    Article 
    ADS 

    Google Scholar 

  • Otero, J. et al. Bottom-up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic Ocean. Mar. Ecol. Prog. Ser. 362, 181–192 (2008).

    Article 
    ADS 

    Google Scholar 

  • Hedgecock, D. & Pudovkin, A. I. A. I. Sweepstakes reproductive success in highly fecund marine fish and shellfish: A review and commentary. Bull. Mar. Sci. 87, 971–1002 (2011).

    Article 

    Google Scholar 

  • Kalinowski, S. T. & Waples, R. S. Relationship of effective to census size in fluctuating populations. Conserv. Biol. 16, 129–136 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Sonderblohm, C. P., Pereira, J. & Erzini, K. Environmental and fishery-driven dynamics of the common octopus (Octopus vulgaris) based on time-series analyses from leeward Algarve, southern Portugal. ICES J. Mar. Sci. 71, 2231–2241 (2014).

    Article 

    Google Scholar 

  • Sonderblohm, C. P. et al. Participatory assessment of management measures for Octopus vulgaris pot and trap fishery from southern Portugal. Mar. Policy 75, 133–142 (2017).

    Article 

    Google Scholar 

  • Arkhipkin, A. I. et al. Stock assessment and management of cephalopods: Advances and challenges for short-lived fishery resources. ICES J. Mar. Sci. 78, 714–730 (2021).

    Article 

    Google Scholar 

  • Franklin, I. R. Evolutionary change in small populations. In Conservation Biology: An Evolutionary-Ecological Perspective (eds Soulé, M. E. & Wilcox, B. A.) 395 (Sinauer Associates, 1980).

    Google Scholar 

  • Slatkin, M. Rare alleles as indicators of gene flow. Evolution 39, 53–65 (1985).

    Article 
    PubMed 

    Google Scholar 

  • Holleley, C. E. & Geerts, P. G. Multiplex manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Article 

    Google Scholar 

  • Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).

    Article 

    Google Scholar 

  • Adamack, A. T. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).

    Article 

    Google Scholar 

  • Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-STATISTICS. J. Hered. 86, 485–486 (1995).

    Article 

    Google Scholar 

  • Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223 (1989).

    Article 
    PubMed 

    Google Scholar 

  • Piry, S., Luikart, G. & Cornuet, J. M. M. Bottleneck: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).

    Article 

    Google Scholar 

  • Luikart, G., Allendorf, F. W., Cornuet, J.-M.M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. https://doi.org/10.1093/jhered/89.3.238 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Besnier, F. & Glover, K. A. ParallelStructure: A R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE 8, e70651 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gilbert, K. J. et al. Recommendations for utilizing and reporting population genetic analyses: The reproducibility of genetic clustering using the program structure. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2012.05754.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • Earl, D. A. & VonHoldt, B. M. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

    Article 

    Google Scholar 

  • Takezaki, N., Nei, M. & Tamura, K. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol. Biol. Evol. 31, 1622–1624 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

    Article 

    Google Scholar 

  • Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279 (1993).

    Article 
    PubMed 

    Google Scholar 

  • Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19, 233–257 (1967).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waples, R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121, 379–391 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katsanevakis, S. & Verriopoulos, G. Seasonal population dynamics of Octopus vulgaris in the eastern Mediterranean. ICES J. Mar. Sci. 63, 151–160 (2006).

    Article 

    Google Scholar 

  • Jereb, P. et al. Cephalopod Biology and Fisheries in Europe: II Species Accounts 360 (ICES, 2015).

    Google Scholar 


  • Source: Ecology - nature.com

    Responsive design meets responsibility for the planet’s future

    Featured video: Investigating our blue ocean planet