in

Effects of moisture and density-dependent interactions on tropical tree diversity

  • Gentry, A. H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Missouri Bot. Gard. 75, 1–34 (1988).

    Article 

    Google Scholar 

  • Givnish, T. J. On the causes of gradients in tropical tree diversity. J. Ecol. 87, 193–210 (1999).

    Article 

    Google Scholar 

  • Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).

    Article 

    Google Scholar 

  • Connell, J. H. in Dynamics of Populations (eds Den Boer, P. J. & Gradwell, G. R.) 298–312 (PUDOC, 1971).

  • Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 40, 618–629 (2017).

    Article 

    Google Scholar 

  • Gillett, J. B. Pest pressure, an underestimated factor in evolution. Syst. Assoc. Publ. 4, 37–46 (1962).

    Google Scholar 

  • Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Condit, R., Engelbrecht, B. M. J., Pino, D., Pérez, R. & Turner, B. L. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc. Natl Acad. Sci. USA 110, 5064–5068 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

    Article 

    Google Scholar 

  • Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Milici, V. R., Dalui, D., Mickley, J. G. & Bagchi, R. Responses of plant–pathogen interactions to precipitation: Implications for tropical tree richness in a changing world. J. Ecol. 108, 1800–1809 (2020).

    Article 

    Google Scholar 

  • Mangan, S. A. et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gripenberg, S. et al. Testing for enemy-mediated density-dependence in the mortality of seedlings: field experiments with five Neotropical tree species. Oikos 123, 185–193 (2014).

    Article 

    Google Scholar 

  • Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fricke, E. C., Tewksbury, J. J. & Rogers, H. S. Multiple natural enemies cause distance-dependent mortality at the seed-to-seedling transition. Ecol. Lett. 17, 593–598 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Augspurger, C. K. & Kelly, C. K. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61, 211–217 (1984).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Eck, J. L., Stump, S. M., Delavaux, C. S., Mangan, S. A. & Comita, L. S. Evidence of within-species specialization by soil microbes and the implications for plant community diversity. Proc. Natl Acad. Sci. USA 116, 7371–7376 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kishimoto-Yamada, K. & Itioka, T. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Entomol. Sci. 18, 407–419 (2015).

    Article 

    Google Scholar 

  • Huberty, A. F. & Denno, R. F. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85, 1383–1398 (2004).

    Article 

    Google Scholar 

  • Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez-Castañeda, G. The world and its shades of green: a meta-analysis on trophic cascades across temperature and precipitation gradients. Glob. Ecol. Biogeogr. 22, 118–130 (2013).

    Article 

    Google Scholar 

  • Janzen, D. H. & Schoener, T. W. Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology 49, 96–110 (1968).

    Article 

    Google Scholar 

  • Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol 60, 133–149 (2011).

    Article 

    Google Scholar 

  • Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 63, 597–612 (2006).

    Article 

    Google Scholar 

  • Swinfield, T., Lewis, O. T., Bagchi, R. & Freckleton, R. P. Consequences of changing rainfall for fungal pathogen-induced mortality in tropical tree seedlings. Ecol. Evol. 2, 1408–1413 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jactel, H. et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob. Chang. Biol. 18, 267–276 (2012).

    Article 
    ADS 

    Google Scholar 

  • Maharjan, S. K. et al. Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient. Biotropica 43, 552–561 (2011).

    Article 

    Google Scholar 

  • Klironomos, J. N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen–Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).

    Article 

    Google Scholar 

  • Barabás, G., Michalska-Smith, M. J. & Allesina, S. The effect of intra- and interspecific competition on coexistence in multispecies communities. Am. Nat. 188, E1–E12 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lebrija-Trejos, E., Wright, S. J., Hernández, A. & Reich, P. B. Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest. Ecology 95, 940–951 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Lebrija-Trejos, E., Reich, P. B., Hernández, A. & Wright, S. J. Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecol. Lett. 19, 1071–1080 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Green, P. T., Harms, K. E. & Connell, J. H. Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proc. Natl Acad. Sci. USA 111, 18649–18654 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Comita, L. S. et al. Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moles, A. T. & Westoby, M. What do seedlings die from and what are the implications for evolution of seed size? Oikos 106, 193–199 (2004).

    Article 

    Google Scholar 

  • Paine, C. E. T., Harms, K. E., Schnitzer, S. A. & Carson, W. P. Weak competition among tropical tree seedlings: implications for species coexistence. Biotropica 40, 432–440 (2008).

    Article 

    Google Scholar 

  • Weissflog, A., Markesteijn, L., Lewis, O. T., Comita, L. S. & Engelbrecht, B. M. J. Contrasting patterns of insect herbivory and predation pressure across a tropical rainfall gradient. Biotropica 50, 302–311 (2018).

    Article 

    Google Scholar 

  • Brenes-Arguedas, T., Coley, P. D. & Kursar, T. A. Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology 90, 1751–1761 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Gaviria, J. & Engelbrecht, B. M. J. Effects of drought, pest pressure and light availability on seedling establishment and growth: their role for distribution of tree species across a tropical rainfall gradient. PLoS ONE 10, e0143955 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spear, E. R., Coley, P. D. & Kursar, T. A. Do pathogens limit the distributions of tropical trees across a rainfall gradient? J. Ecol. 103, 165–174 (2015).

    Article 

    Google Scholar 

  • Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Chang. Biol. 22, 2329–2352 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Riutta, T. et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol. Biochem. 49, 124–131 (2012).

    Article 
    CAS 

    Google Scholar 

  • Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Poorter, L. & Bongers, F. Environmental changes during secondary succession in a tropical dry forest in Mexico. J. Trop. Ecol. 27, 477–489 (2011).

    Article 

    Google Scholar 

  • Krishnadas, M. & Comita, L. S. Edge effects on seedling diversity are mediated by impacts of fungi and insects on seedling recruitment but not survival. Front. Glob. Chang. 2, 76 (2019).

    Article 

    Google Scholar 

  • Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Uriarte, M., Muscarella, R. & Zimmerman, J. K. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Glob. Chang. Biol. 24, e692–e704 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Bachelot, B., Kobe, R. K. & Vriesendorp, C. Negative density-dependent mortality varies over time in a wet tropical forest, advantaging rare species, common species, or no species. Oecologia 179, 853–861 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Zhu, Y. et al. Density‐dependent survival varies with species life‐history strategy in a tropical forest. Ecol. Lett. 21, 506–515 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wright, S. J., Calderón, O., Hernandéz, A. & Muller-Landau, H. C. Annual and spatial variation in seedfall and seedling recruitment in a neotropical forest. Ecology 86, 848–860 (2005).

    Article 

    Google Scholar 

  • Condit, R. Tropical Forest Census Plots https://doi.org/10.1007/978-3-662-03664-8 (Springer, 1998).

  • Kupers, S. J., Wirth, C., Engelbrecht, B. M. J. & Rüger, N. Dry season soil water potential maps of a 50 hectare tropical forest plot on Barro Colorado Island, Panama. Sci. Data 6, 63 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garwood, N. C. in The Ecology of a Tropical Forest: Seasonal Rhythms and Long-term Changes (eds Leigh, E. G., Rand, A. S. & Windsor, D. M.) 173–185 (Smithsonian Institution Press, 1982).

  • Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article 

    Google Scholar 

  • Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference https://doi.org/10.1007/b97636 (Springer, 2004).

  • Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Detto, M., Visser, M. D., Wright, S. J. & Pacala, S. W. Bias in the detection of negative density dependence in plant communities. Ecol. Lett. 22, 1923–1939 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).

    Article 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Bates, D. et al. Package ‘lme4’ Reference Manual https://cran.r-project.org/web/packages/lme4/lme4.pdf (2021).

  • Wilkinson, G. N. & Rogers, C. E. Symbolic description of factorial models for analysis of variance. Appl. Stat. 22, 392 (1973).

    Article 

    Google Scholar 

  • Afshartous, D. & Preston, R. A. Key results of interaction models with centering. J. Stat. Educ. https://doi.org/10.1080/10691898.2011.11889620 (2011).

  • Cohen, J. Statistical Power Analysis for the Behavioral Sciences https://doi.org/10.1016/C2013-0-10517-X (Elsevier, 1977).

  • Steiger, J. H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 87, 245–251 (1980).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (2016).

  • Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models https://CRAN.R-project.org/package=nlme (2020).

  • Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).

  • Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models https://CRAN.R-project.org/package=DHARMa (2021).

  • Lebrija-Trejos, E., Wright, S. J. & Hernández, A. Moisture, Density-dependent Interactions, and Tropical Tree Diversity https://figshare.com/s/a4d2dbb2a73b3eb09f9f (2022).

  • Kupers, S. J., Wirth, C., Engelbrecht, B. M. J. & Rüger, N. Dry Season Soil Water Potential Maps of a 50 Hectare Tropical Forest Plot on Barro Colorado Island, Panama https://doi.org/10.6084/m9.figshare.7611005.v1 (2019).

  • Paton, S. Barro Colorado Island, Lutz Catchment, Soil Moisture, Manual https://doi.org/10.25573/data.10042517.v1 (2019).


  • Source: Ecology - nature.com

    Responsive design meets responsibility for the planet’s future

    Featured video: Investigating our blue ocean planet