Fransson, T. et al. Magnetic cues trigger extensive refuelling. Nature 414, 35–36 (2001).
Google Scholar
Boles, L. C. & Lohmann, K. J. True navigation and magnetic maps in spiny lobsters. Nature 421, 60–63 (2003).
Google Scholar
Naisbett-Jones, L. C. & Lohmann, K. J. Magnetoreception and magnetic navigation in fishes: a half-century of discovery. J. Comp. Physiol. A 2021, 1–22 (2022).
Xu, J. et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540 (2021).
Google Scholar
Bellinger, M. R. et al. Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proc. Natl Acad. Sci. USA 119, e2108655119 (2022).
Google Scholar
Boström, J. E., Åkesson, S. & Alerstam, T. Where on earth can animals use a geomagnetic bi-coordinate map for navigation? Ecography 35, 1039–1047 (2012).
Google Scholar
Muheim, R., Moore, F. & Phillips, J. Calibration of magnetic and celestial compass cues in migratory birds–a review of cue-conflict experiments. J. Exp. Biol. 209, 2–17 (2006).
Google Scholar
Lohmann, K. J. & Lohmann, C. M. F. Sea turtles, lobsters, and oceanic magnetic maps. Mar. Freshw. Behav. Physiol. 39, 49–64 (2006).
Freake, M. J., Muheim, R. & Phillips, J. B. Magnetic maps in animals: a theory comes of age? Q. Rev. Biol. 81, 327–347 (2006).
Google Scholar
Johnsen, S. & Lohmann, K. J. The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 2005 69 6, 703–712 (2005).
Google Scholar
Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).
Komolkin, A. V. et al. Theoretically possible spatial accuracy of geomagnetic maps used by migrating animals. J. R. Soc. Interface 14, 20161002 (2017).
Google Scholar
Phillips, J. B., Borland, S. C., Freake, M. J., Brassart, J. & Kirschvink, J. L. ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J. Exp. Biol. 205, 3903–3914 (2002).
Google Scholar
Kishkinev, D. et al. Navigation by extrapolation of geomagnetic cues in a migratory songbird. Curr. Biol. 31, 1563–1569.e4 (2021).
Google Scholar
Lohmann, K. J., Cain, S. D., Dodge, S. A. & Lohmann, C. M. F. Regional magnetic fields as navigational markers for sea turtles. Science 294, 364–366 (2001).
Google Scholar
Boström, J. E. et al. Autumn migratory fuelling: a response to simulated magnetic displacements in juvenile wheatears, Oenanthe oenanthe. Behav. Ecol. Sociobiol. 64, 1725–1732 (2010).
Google Scholar
Lohmann, K. & Lohmann, C. Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude. J. Exp. Biol. 194, 23–32 (1994).
Google Scholar
Fuxjager, M. J., Eastwood, B. S. & Lohmann, K. J. Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway. J. Exp. Biol. 214, 2504–2508 (2011).
Google Scholar
Putman, N. F., Endres, C. S., Lohmann, C. M. F. & Lohmann, K. J. Longitude perception and bicoordinate magnetic maps in sea turtles. Curr. Biol. 21, 463–466 (2011).
Google Scholar
Scanlan, M. M., Putman, N. F., Pollock, A. M. & Noakes, D. L. G. Magnetic map in nonanadromous Atlantic salmon. Proc. Natl Acad. Sci. USA 23, 10995–10999 (2018).
Google Scholar
Pakhomov, A. et al. Magnetic map navigation in a migratory songbird requires trigeminal input. Sci. Rep. 8, 1–6 (2018).
Google Scholar
Chernetsov, N. et al. Migratory Eurasian reed warblers can use magnetic declination to solve the longitude problem. Curr. Biol. 27, 2647–2651.e2 (2017).
Google Scholar
Kishkinev, D., Chernetsov, N., Pakhomov, A., Heyers, D. & Mouritsen, H. Eurasian reed warblers compensate for virtual magnetic displacement. Curr. Biol. 25, R822–R824 (2015).
Google Scholar
Chernetsov, N., Pakhomov, A., Davydov, A., Cellarius, F. & Mouritsen, H. No evidence for the use of magnetic declination for migratory navigation in two songbird species. PLoS One 15, e0232136 (2020).
Google Scholar
Bulte, M., Heyers, D., Mouritsen, H. & Bairlein, F. Geomagnetic information modulates nocturnal migratory restlessness but not fueling in a long distance migratory songbird. J. Avian Biol. 48, 75–82 (2017).
Google Scholar
Kullberg, C., Lind, J., Fransson, T., Jakobsson, S. & Vallin, A. Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 373–378 (2003).
Google Scholar
Henshaw, I. et al. Food intake and fuel deposition in a migratory bird is affected by multiple as well as single-step changes in the magnetic field. J. Exp. Biol. 211, 649–653 (2008).
Google Scholar
Henshaw, I., Fransson, T., Jakobsson, S., Jenni-Eiermann, S. & Kullberg, C. Information from the geomagnetic field triggers a reduced adrenocortical response in a migratory bird. J. Exp. Biol. 212, 2902–2907 (2009).
Google Scholar
Henshaw, I., Fransson, T., Jakobsson, S. & Kullberg, C. Geomagnetic field affects spring migratory direction in a long distance migrant. Behav. Ecol. Sociobiol. 64, 1317–1323 (2010).
Google Scholar
Ilieva, M., Bianco, G. & Åkesson, S. Effect of geomagnetic field on migratory activity in a diurnal passerine migrant, the dunnock, Prunella modularis. Anim. Behav. 146, 79–85 (2018).
Google Scholar
Kullberg, C., Henshaw, I., Jakobsson, S., Johansson, P. & Fransson, T. Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc. R. Soc. B Biol. Sci. 274, 2145–2151 (2007).
Google Scholar
Boström, J. E., Kullberg, C. & Åkesson, S. Northern magnetic displacements trigger endogenous fuelling responses in a naive bird migrant. Behav. Ecol. Sociobiol. 66, 819–821 (2012).
Google Scholar
Ilieva, M., Bianco, G. & Åkesson, S. Does migratory distance affect fuelling in a medium-distance passerine migrant?: results from direct and step-wise simulated magnetic displacements. Biol. Open 5, 272–278 (2016).
Google Scholar
Putman, N. F. et al. An inherited magnetic map guides ocean navigation in Juvenile Pacific Salmon. Curr. Biol. 24, 446–450 (2014).
Google Scholar
Putman, N. F., Meinke, A. M. & Noakes, D. L. G. Rearing in a distorted magnetic field disrupts the ‘map sense’ of juvenile steelhead trout. Biol. Lett. 10, 20140169 (2014).
Google Scholar
Putman, N. F., Williams, C. R., Gallagher, E. P. & Dittman, A. H. A sense of place: Pink salmon use a magnetic map for orientation. J. Exp. Biol. 223, jeb218735 (2020).
Google Scholar
Naisbett-Jones, L. C., Putman, N. F., Stephenson, J. F., Ladak, S. & Young, K. A. A magnetic map leads juvenile European eels to the Gulf stream. Curr. Biol. 27, 1236–1240 (2017).
Google Scholar
Keller, B. A., Putman, N. F., Grubbs, R. D., Portnoy, D. S. & Murphy, T. P. Map-like use of Earth’s magnetic field in sharks. Curr. Biol. 31, 2881–2886.e3 (2021).
Google Scholar
Putman, N. F., Verley, P., Endres, C. S. & Lohmann, K. J. Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles. J. Exp. Biol. 218, 1044–1050 (2015).
Google Scholar
Fuxjager, M. J., Davidoff, K. R., Mangiamele, L. A. & Lohmann, K. J. The geomagnetic environment in which sea turtle eggs incubate affects subsequent magnetic navigation behaviour of hatchlings. Proc. R. Soc. London Ser. B Biol. Sci. https://doi.org/10.1098/rspb.2014.1218 (2014).
Lohmann, K. J., Lohmann, C. M. F., Ehrhart, L. M., Bagley, D. A. & Swing, T. Geomagnetic map used in sea-turtle navigation. Nature 428, 909–910 (2004).
Google Scholar
Merrill, M. W. & Salmon, M. Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta) from the Gulf of Mexico. Mar. Biol. 158, 101–112 (2011).
Google Scholar
Wynn, J. et al. Magnetic stop signs signal a European songbird’s arrival at the breeding site after migration. Science 375, 446–449 (2022).
Google Scholar
McLaren, J., Schmaljohann, H. & Blasius, B. Self-correcting sun compass, spherical geometry and cue-transfers predict naïve migratory performance. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/RS.3.RS-996110/V1 (2021).
Wynn, J. et al. How might magnetic secular variation impact avian philopatry? J. Comp. Physiol. A Neuroethol. Sens., Neural, Behav. Physiol. 208, 145–154 (2022).
Google Scholar
Walker, M. M. & Bitterman, M. E. Short communication: honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145, 489–494 (1989).
Google Scholar
Semm, P. & Beason, R. C. Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res. Bull. 25, 735–740 (1990).
Google Scholar
Phillips, J. B., Michael, A. E., Freake, J., Fischer, J. H. & Borland, A. S. C. Behavioral titration of a magnetic map coordinate. J. Comp. Physiol. A 157–160 (2002).
Hays, G. C. et al. Travel routes to remote ocean targets reveal the map sense resolution for a marine migrant. J. R. Soc. Interface 19, 20210859 (2022).
Google Scholar
Fischer, J. H., Munro, U. & Phillips, J. B. Magnetic navigation by an avian migrant? Avian Migration. 423–432 https://doi.org/10.1007/978-3-662-05957-9_30 (2003).
Deutschlander, M. E., Phillips, J. & Munro, U. Age-dependent orientation to magnetically-simulated geographic displacements in migratory Australian Silvereyes (Zosterops l. lateralis). Wilson J. Ornithol. 124, 467–477 (2012).
Google Scholar
Source: Ecology - nature.com