in

Sense of doubt: inaccurate and alternate locations of virtual magnetic displacements may give a distorted view of animal magnetoreception ability

  • Fransson, T. et al. Magnetic cues trigger extensive refuelling. Nature 414, 35–36 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boles, L. C. & Lohmann, K. J. True navigation and magnetic maps in spiny lobsters. Nature 421, 60–63 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Naisbett-Jones, L. C. & Lohmann, K. J. Magnetoreception and magnetic navigation in fishes: a half-century of discovery. J. Comp. Physiol. A 2021, 1–22 (2022).

  • Xu, J. et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bellinger, M. R. et al. Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proc. Natl Acad. Sci. USA 119, e2108655119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boström, J. E., Åkesson, S. & Alerstam, T. Where on earth can animals use a geomagnetic bi-coordinate map for navigation? Ecography 35, 1039–1047 (2012).

    Article 

    Google Scholar 

  • Muheim, R., Moore, F. & Phillips, J. Calibration of magnetic and celestial compass cues in migratory birds–a review of cue-conflict experiments. J. Exp. Biol. 209, 2–17 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Lohmann, K. J. & Lohmann, C. M. F. Sea turtles, lobsters, and oceanic magnetic maps. Mar. Freshw. Behav. Physiol. 39, 49–64 (2006).

  • Freake, M. J., Muheim, R. & Phillips, J. B. Magnetic maps in animals: a theory comes of age? Q. Rev. Biol. 81, 327–347 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Johnsen, S. & Lohmann, K. J. The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 2005 69 6, 703–712 (2005).

    CAS 

    Google Scholar 

  • Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).

  • Komolkin, A. V. et al. Theoretically possible spatial accuracy of geomagnetic maps used by migrating animals. J. R. Soc. Interface 14, 20161002 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, J. B., Borland, S. C., Freake, M. J., Brassart, J. & Kirschvink, J. L. ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J. Exp. Biol. 205, 3903–3914 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Kishkinev, D. et al. Navigation by extrapolation of geomagnetic cues in a migratory songbird. Curr. Biol. 31, 1563–1569.e4 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lohmann, K. J., Cain, S. D., Dodge, S. A. & Lohmann, C. M. F. Regional magnetic fields as navigational markers for sea turtles. Science 294, 364–366 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boström, J. E. et al. Autumn migratory fuelling: a response to simulated magnetic displacements in juvenile wheatears, Oenanthe oenanthe. Behav. Ecol. Sociobiol. 64, 1725–1732 (2010).

    Article 

    Google Scholar 

  • Lohmann, K. & Lohmann, C. Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude. J. Exp. Biol. 194, 23–32 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fuxjager, M. J., Eastwood, B. S. & Lohmann, K. J. Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway. J. Exp. Biol. 214, 2504–2508 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Putman, N. F., Endres, C. S., Lohmann, C. M. F. & Lohmann, K. J. Longitude perception and bicoordinate magnetic maps in sea turtles. Curr. Biol. 21, 463–466 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scanlan, M. M., Putman, N. F., Pollock, A. M. & Noakes, D. L. G. Magnetic map in nonanadromous Atlantic salmon. Proc. Natl Acad. Sci. USA 23, 10995–10999 (2018).

    Article 

    Google Scholar 

  • Pakhomov, A. et al. Magnetic map navigation in a migratory songbird requires trigeminal input. Sci. Rep. 8, 1–6 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chernetsov, N. et al. Migratory Eurasian reed warblers can use magnetic declination to solve the longitude problem. Curr. Biol. 27, 2647–2651.e2 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kishkinev, D., Chernetsov, N., Pakhomov, A., Heyers, D. & Mouritsen, H. Eurasian reed warblers compensate for virtual magnetic displacement. Curr. Biol. 25, R822–R824 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chernetsov, N., Pakhomov, A., Davydov, A., Cellarius, F. & Mouritsen, H. No evidence for the use of magnetic declination for migratory navigation in two songbird species. PLoS One 15, e0232136 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bulte, M., Heyers, D., Mouritsen, H. & Bairlein, F. Geomagnetic information modulates nocturnal migratory restlessness but not fueling in a long distance migratory songbird. J. Avian Biol. 48, 75–82 (2017).

    Article 

    Google Scholar 

  • Kullberg, C., Lind, J., Fransson, T., Jakobsson, S. & Vallin, A. Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 373–378 (2003).

    Article 

    Google Scholar 

  • Henshaw, I. et al. Food intake and fuel deposition in a migratory bird is affected by multiple as well as single-step changes in the magnetic field. J. Exp. Biol. 211, 649–653 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Henshaw, I., Fransson, T., Jakobsson, S., Jenni-Eiermann, S. & Kullberg, C. Information from the geomagnetic field triggers a reduced adrenocortical response in a migratory bird. J. Exp. Biol. 212, 2902–2907 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Henshaw, I., Fransson, T., Jakobsson, S. & Kullberg, C. Geomagnetic field affects spring migratory direction in a long distance migrant. Behav. Ecol. Sociobiol. 64, 1317–1323 (2010).

    Article 

    Google Scholar 

  • Ilieva, M., Bianco, G. & Åkesson, S. Effect of geomagnetic field on migratory activity in a diurnal passerine migrant, the dunnock, Prunella modularis. Anim. Behav. 146, 79–85 (2018).

    Article 

    Google Scholar 

  • Kullberg, C., Henshaw, I., Jakobsson, S., Johansson, P. & Fransson, T. Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc. R. Soc. B Biol. Sci. 274, 2145–2151 (2007).

    Article 

    Google Scholar 

  • Boström, J. E., Kullberg, C. & Åkesson, S. Northern magnetic displacements trigger endogenous fuelling responses in a naive bird migrant. Behav. Ecol. Sociobiol. 66, 819–821 (2012).

    Article 

    Google Scholar 

  • Ilieva, M., Bianco, G. & Åkesson, S. Does migratory distance affect fuelling in a medium-distance passerine migrant?: results from direct and step-wise simulated magnetic displacements. Biol. Open 5, 272–278 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Putman, N. F. et al. An inherited magnetic map guides ocean navigation in Juvenile Pacific Salmon. Curr. Biol. 24, 446–450 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Putman, N. F., Meinke, A. M. & Noakes, D. L. G. Rearing in a distorted magnetic field disrupts the ‘map sense’ of juvenile steelhead trout. Biol. Lett. 10, 20140169 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Putman, N. F., Williams, C. R., Gallagher, E. P. & Dittman, A. H. A sense of place: Pink salmon use a magnetic map for orientation. J. Exp. Biol. 223, jeb218735 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Naisbett-Jones, L. C., Putman, N. F., Stephenson, J. F., Ladak, S. & Young, K. A. A magnetic map leads juvenile European eels to the Gulf stream. Curr. Biol. 27, 1236–1240 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keller, B. A., Putman, N. F., Grubbs, R. D., Portnoy, D. S. & Murphy, T. P. Map-like use of Earth’s magnetic field in sharks. Curr. Biol. 31, 2881–2886.e3 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Putman, N. F., Verley, P., Endres, C. S. & Lohmann, K. J. Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles. J. Exp. Biol. 218, 1044–1050 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Fuxjager, M. J., Davidoff, K. R., Mangiamele, L. A. & Lohmann, K. J. The geomagnetic environment in which sea turtle eggs incubate affects subsequent magnetic navigation behaviour of hatchlings. Proc. R. Soc. London Ser. B Biol. Sci. https://doi.org/10.1098/rspb.2014.1218 (2014).

  • Lohmann, K. J., Lohmann, C. M. F., Ehrhart, L. M., Bagley, D. A. & Swing, T. Geomagnetic map used in sea-turtle navigation. Nature 428, 909–910 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Merrill, M. W. & Salmon, M. Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta) from the Gulf of Mexico. Mar. Biol. 158, 101–112 (2011).

    Article 

    Google Scholar 

  • Wynn, J. et al. Magnetic stop signs signal a European songbird’s arrival at the breeding site after migration. Science 375, 446–449 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McLaren, J., Schmaljohann, H. & Blasius, B. Self-correcting sun compass, spherical geometry and cue-transfers predict naïve migratory performance. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/RS.3.RS-996110/V1 (2021).

  • Wynn, J. et al. How might magnetic secular variation impact avian philopatry? J. Comp. Physiol. A Neuroethol. Sens., Neural, Behav. Physiol. 208, 145–154 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Walker, M. M. & Bitterman, M. E. Short communication: honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145, 489–494 (1989).

    Article 

    Google Scholar 

  • Semm, P. & Beason, R. C. Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res. Bull. 25, 735–740 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Phillips, J. B., Michael, A. E., Freake, J., Fischer, J. H. & Borland, A. S. C. Behavioral titration of a magnetic map coordinate. J. Comp. Physiol. A 157–160 (2002).

  • Hays, G. C. et al. Travel routes to remote ocean targets reveal the map sense resolution for a marine migrant. J. R. Soc. Interface 19, 20210859 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, J. H., Munro, U. & Phillips, J. B. Magnetic navigation by an avian migrant? Avian Migration. 423–432 https://doi.org/10.1007/978-3-662-05957-9_30 (2003).

  • Deutschlander, M. E., Phillips, J. & Munro, U. Age-dependent orientation to magnetically-simulated geographic displacements in migratory Australian Silvereyes (Zosterops l. lateralis). Wilson J. Ornithol. 124, 467–477 (2012).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Necrophagy by insects in Oculudentavis and other lizard body fossils preserved in Cretaceous amber

    Upside down sulphate dynamics in a saline inland lake