in

Fungal parasitism on diatoms alters formation and bio–physical properties of sinking aggregates

  • Falkowski, P. The power of plankton. Nature 483, 17–20 (2012).

    Article 

    Google Scholar 

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grossart, H. P. & Simon, M. Significance of limnetic organic aggregates (lake snow) for the sinking flux of particulate organic matter in a large lake. Aquat. Microb. Ecol. 15, 115–125 (1998).

    Article 

    Google Scholar 

  • Weyhenmeyer, G. A. & Bloesch, J. The pattern of particle flux variability in Swedish and Swiss lakes. Sci. Total Environ. 266, 69–78 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fender, C. K. et al. Investigating particle size-flux relationships and the biological pump across a range of plankton ecosystem states from coastal to oligotrophic. Front. Marine Sci. 6, https://doi.org/10.3389/fmars.2019.00603 (2019).

  • Iversen, M. H., Nowald, N., Ploug, H., Jackson, G. A. & Fischer, G. High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes and ballasting effects. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 57, 771–784 (2010).

    Article 
    CAS 

    Google Scholar 

  • Griffiths, J. R. et al. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Glob. Change Biol. 23, 2179–2196 (2017).

    Article 

    Google Scholar 

  • Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jenny, J. P. et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob. Chang Biol. 22, 1481–1489 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl Acad. Sci. 111, 5628–5633 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon, M., Grossart, H. P., Schweitzer, B. & Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28, 175–211 (2002).

    Article 

    Google Scholar 

  • Burd, A. B. & Jackson, G. A. Particle aggregation. Ann. Rev. Mar. Sci. 1, 65–90 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Kiørboe, T., Lundsgaard, C., Olesen, M. & Hansen, J. L. S. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. Mar. Res. 52, 297–323 (1994).

    Article 

    Google Scholar 

  • Boyd, P. W. & Trull, T. W. Understanding the export of biogenic particles in oceanic waters: Is there consensus? Prog. Oceanogr. 72, 276–312 (2007).

    Article 

    Google Scholar 

  • Legendre, L. & Rivkin, R. B. Fluxes of carbon in the upper ocean: regulation by food-web control nodes. Mar. Ecol. Prog. Ser. 242, 95–109 (2002).

    Article 

    Google Scholar 

  • Kaneko, H. et al. Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean. iScience 24, 102002 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grossart, H.-P. et al. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 17, 339–354 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amend, A. et al. Fungi in the marine environment: Open questions and unsolved problems. mBio 10, e01189–01118 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ortiz-Álvarez, R., Triadó-Margarit, X., Camarero, L., Casamayor, E. O. & Catalan, J. High planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic and parasitic eukaryotic life forms. Sci. Rep. 8, 4457 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutiérrez, M. H., Pantoja, S., Tejos, E. & Quiñones, R. A. The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar. Biol. 158, 205–219 (2011).

    Article 

    Google Scholar 

  • Edgcomb, V. P., Beaudoin, D., Gast, R., Biddle, J. F. & Teske, A. Marine subsurface eukaryotes: The fungal majority. Environ. Microbiol. 13, 172–183 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frenken, T. et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ. Microbiol. 19, 3802–3822 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Van den Wyngaert, S. et al. Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits. ISME J. 16, 2242–2254 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gsell, A. S. et al. Long-term trends and seasonal variation in host density, temperature, and nutrients differentially affect chytrid fungi parasitising lake phytoplankton. Freshwat. Biol. https://doi.org/10.1111/fwb.13958 (2022).

  • Gutiérrez, M. H., Jara, A. M. & Pantoja, S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ. Microbiol. 18, 1646–1653 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Kilias, E. S. et al. Chytrid fungi distribution and co-occurrence with diatoms correlate with sea ice melt in the Arctic Ocean. Commun. Biol. 3, 183 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hassett, B. T., Ducluzeau, A. L. L., Collins, R. E. & Gradinger, R. Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic. Environ. Microbiol. 19, 475–484 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lepelletier, F. et al. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates. Protist 165, 230–244 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Le Calvez, T., Burgaud, G., Mahé, S., Barbier, G. & Vandenkoornhuyse, P. Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol. 75, 6415–6421 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richards, T. A. et al. Molecular diversity and distribution of marine fungi across 130 european environmental samples. Proc. R. Soc. B Biol. Sci. 282, 20152243 (2015).

    Article 

    Google Scholar 

  • Taylor, J. D. & Cunliffe, M. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J. 10, 2118–2128 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Comeau, A. M., Vincent, W. F., Bernier, L. & Lovejoy, C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci. Rep. 6, 30120 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y., Sen, B., He, Y., Xie, N. & Wang, G. Spatiotemporal distribution and assemblages of planktonic fungi in the coastal waters of the Bohai Sea. Front. Microbiol. 9, 584 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, Z., Johnson, Z. I. & Wang, G. Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J. 4, 111–120 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Duan, Y. et al. A high-resolution time series reveals distinct seasonal patterns of planktonic fungi at a temperate coastal ocean site (Beaufort, North Carolina, USA). Appl. Environ. Microbiol. 84, e00967–00918 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cleary, A. C., Søreide, J. E., Freese, D., Niehoff, B. & Gabrielsen, T. M. Feeding by Calanus glacialis in a high arctic fjord: Potential seasonal importance of alternative prey. ICES J. Mar. Sci. 74, 1937–1946 (2017).

    Article 

    Google Scholar 

  • Renaud, P. E., Morata, N., Carroll, M. L., Denisenko, S. G. & Reigstad, M. Pelagic–benthic coupling in the western Barents Sea: Processes and time scales. Deep Sea Res. Part II: Topical Stud. Oceanogr. 55, 2372–2380 (2008).

    Article 
    CAS 

    Google Scholar 

  • Lepère, C., Ostrowski, M., Hartmann, M., Zubkov, M. V. & Scanlan, D. J. In situ associations between marine photosynthetic picoeukaryotes and potential parasites – a role for fungi? Environ. Microbiol. Rep. 8, 445–451 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Kagami, M., Gurung, T. B., Yoshida, T. & Urabe, J. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol. Oceanogr. 51, 2775–2786 (2006).

    Article 

    Google Scholar 

  • Gerphagnon, M., Colombet, J., Latour, D. & Sime-Ngando, T. Spatial and temporal changes of parasitic chytrids of cyanobacteria. Sci. Rep. 7, 6056 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ibelings, B. W. et al. Chytrid infections and diatom spring blooms: Paradoxical effects of climate warming on fungal epidemics in lakes. Freshwat. Biol. 56, 754–766 (2011).

    Article 

    Google Scholar 

  • Gsell, A. S. et al. Spatiotemporal variation in the distribution of chytrid parasites in diatom host populations. Freshwat. Biol. 58, 523–537 (2013).

    Article 

    Google Scholar 

  • Grami, B. et al. Functional effects of parasites on food web properties during the spring diatom bloom in Lake Pavin: A linear inverse modeling analysis. PLOS ONE. 6, e23273 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klawonn, I. et al. Characterizing the “fungal shunt”: Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl Acad. Sci. 118, e2102225118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kagami, M., Miki, T. & Takimoto, G. Mycoloop: Chytrids in aquatic food webs. Front. Microbiol. 5, 166 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laundon, D. & Cunliffe, M. A call for a better understanding of aquatic chytrid biology. Front. Fungal Biol. 2, https://doi.org/10.3389/ffunb.2021.708813 (2021).

  • Ploug, H., Iversen, M. H. & Fischer, G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria. Limnol. Oceanogr. 53, 1878–1886 (2008).

    Article 

    Google Scholar 

  • Laurenceau-Cornec, E. C., Trull, T. W., Davies, D. M., De La Rocha, C. L. & Blain, S. Phytoplankton morphology controls on marine snow sinking velocity. Mar. Ecol. Prog. Ser. 520, 35–56 (2015).

    Article 

    Google Scholar 

  • Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).

    Article 

    Google Scholar 

  • Alldredge, A. L., Gotschalk, C., Passow, U. & Riebesell, U. Mass aggregation of diatom blooms: Insights from a mesocosm study. Deep Sea Res. Part II: Topical Stud. Oceanogr. 42, 9–27 (1995).

    Article 
    CAS 

    Google Scholar 

  • Seto, K., Van den Wyngaert, S., Degawa, Y. & Kagami, M. Taxonomic revision of the genus Zygorhizidium: Zygorhizidiales and Zygophlyctidales ord. nov. (Chytridiomycetes, Chytridiomycota). Fungal Syst. Evol. 5, 17–38 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Engel, A. in Practical Guidelines for the Analysis of Seawater (eds Wurl O & Raton B) (CRC Press, 2009).

  • Cisternas-Novoa, C., Lee, C. & Engel, A. A semi-quantitative spectrophotometric, dye-binding assay for determination of Coomassie Blue stainable particles. Limnol. Oceanogr. Methods. 12, 604–616 (2014).

    Article 

    Google Scholar 

  • Passow, U. & Alldredge, A. L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol. Oceanogr. 40, 1326–1335 (1995).

    Article 
    CAS 

    Google Scholar 

  • Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).

    Article 

    Google Scholar 

  • van der Jagt, H., Friese, C., Stuut, J.-B. W., Fischer, G. & Iversen, M. H. The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: Aggregation, settling, and scavenging potential of marine snow. Limnol. Oceanogr. 63, 1386–1394 (2018).

    Article 

    Google Scholar 

  • Grossart, H. P. & Ploug, H. Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267–277 (2001).

    Article 
    CAS 

    Google Scholar 

  • Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624 (2010).

    Article 
    CAS 

    Google Scholar 

  • Ploug, H. & Grossart, H. P. Bacterial growth and grazing on diatom aggregates: Respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475 (2000).

    Article 
    CAS 

    Google Scholar 

  • Belcher, A. et al. Depth-resolved particle-associated microbial respiration in the northeast Atlantic. Biogeosciences 13, 4927–4943 (2016).

    Article 

    Google Scholar 

  • Ploug, H., Grossart, H. P., Azam, F. & Jørgensen, B. B. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: Implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser. 179, 1–11 (1999).

    Article 
    CAS 

    Google Scholar 

  • Turner, J. T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130, 205–248 (2015).

    Article 

    Google Scholar 

  • Nguyen, T. T. H. et al. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nat. Commun. 13, 1657 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zakem, E. J., Cael, B. B. & Levine, N. M. A unified theory for organic matter accumulation. Proc. Natl Acad. Sci. 118, e2016896118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 14, 775–780 (2021).

    Article 
    CAS 

    Google Scholar 

  • Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).

    Article 
    CAS 

    Google Scholar 

  • Henson, S., Le Moigne, F. & Giering, S. Drivers of carbon export efficiency in the global ocean. Glob. Biogeochem. Cycles. 33, 891–903 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gsell, A. S., De Senerpont Domis, L. N., Verhoeven, K. J. F., Van Donk, E. & Ibelings, B. W. Chytrid epidemics may increase genetic diversity of a diatom spring-bloom. ISME J. 7, 2057–2059 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agha, R., Saebelfeld, M., Manthey, C., Rohrlack, T. & Wolinska, J. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Sci. Rep. 6, 35039 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rasconi, S. et al. Parasitic chytrids upgrade and convey primary produced carbon during inedible algae proliferation. Protist 171, 125768 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guidi, L. et al. Effects of phytoplankton community on production, size, and export of large aggregates: A world-ocean analysis. Limnol. Oceanogr. 54, 1951–1963 (2009).

    Article 

    Google Scholar 

  • Boyd, P. W. & Newton, P. P. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 46, 63–91 (1999).

    Article 
    CAS 

    Google Scholar 

  • van der Jagt, H., Wiedmann, I., Hildebrandt, N., Niehoff, B. & Iversen, M. H. Aggregate feeding by the copepods Calanus and Pseudocalanus controls carbon flux attenuation in the arctic shelf sea during the productive period. Front. Mar. Sci. 7, 543124 (2020).

    Article 

    Google Scholar 

  • Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).

    Article 

    Google Scholar 

  • Cavan, E. L., Henson, S. A., Belcher, A. & Sanders, R. Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences 14, 177–186 (2017).

    Article 
    CAS 

    Google Scholar 

  • Gachon, C. M. M., Küpper, H., Küpper, F. C. & Šetlík, I. Single-cell chlorophyll fluorescence kinetic microscopy of Pylaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota). Eur. J. Phycol. 41, 395–403 (2006).

    Article 

    Google Scholar 

  • Senga, Y., Yabe, S., Nakamura, T. & Kagami, M. Influence of parasitic chytrids on the quantity and quality of algal dissolved organic matter (AOM). Water Res. 145, 346––353 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Roberts, C., Allen, R., Bird, K. E. & Cunliffe, M. Chytrid fungi shape bacterial communities on model particulate organic matter. Biol. Lett. 16, 20200368 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blackburn, N., Fenchel, T. & Mitchell, J. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282, 2254–2256 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. 113, 1576–1581 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shibl, A. A. et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc. Natl Acad. Sci. 117, 27445–27455 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guidi, L. et al. Relationship between particle size distribution and flux in the mesopelagic zone. Deep-Sea Res. Part I Oceanogr. Res. Papers. 55, 1364–1374 (2008).

    Article 
    CAS 

    Google Scholar 

  • Jackson, G. A. et al. Particle size spectra between 1 μm and 1 cm at Monterey Bay determined using multiple instruments. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 44, 1739–1767 (1997).

    Article 

    Google Scholar 

  • Frenken, T. et al. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Glob. Change Biol. 22, 299–309 (2016).

    Article 

    Google Scholar 

  • Mari, X., Passow, U., Migon, C., Burd, A. B. & Legendre, L. Transparent exopolymer particles: Effects on carbon cycling in the ocean. Prog. Oceanogr. 151, 13–37 (2017).

    Article 

    Google Scholar 

  • Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55, 287–333 (2002).

    Article 

    Google Scholar 

  • Prieto, L. et al. Scales and processes in the aggregation of diatom blooms: high time resolution and wide size range records in a mesocosm study. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 49, 1233–1253 (2002).

    Article 

    Google Scholar 

  • Kiørboe, T., Andersen, K. P. & Dam, H. G. Coagulation efficiency and aggregate formation in marine phytoplankton. Mar. Biol. 107, 235–245 (1990).

    Article 

    Google Scholar 

  • Vidal-Melgosa, S. et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat. Commun. 12, 1150 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gärdes, A., Iversen, M. H., Grossart, H. P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Grossart, H. P. & Simon, M. Interactions of planktonic algae and bacteria: Effects on algal growth and organic matter dynamics. Aquat. Microb. Ecol. 47, 163–176 (2007).

    Article 

    Google Scholar 

  • Short, S. M. The ecology of viruses that infect eukaryotic algae. Environ. Microbiol. 14, 2253–2271 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Carlström, D. The crystal structure of α-chitin (Poly-N-acetyl-d-glucosamine). J. Biophysical Biochemical Cytol. 3, 669–683 (1957).

    Article 

    Google Scholar 

  • Miklasz, K. A. & Denny, M. W. Diatom sinkings speeds: Improved predictions and insight from a modified Stokes’ law. Limnol. Oceanogr. 55, 2513–2525 (2010).

    Article 

    Google Scholar 

  • Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397, 508 (1999).

    Article 
    CAS 

    Google Scholar 

  • Gerphagnon, M. et al. Comparison of sterol and fatty acid profiles of chytrids and their hosts reveals trophic upgrading of nutritionally inadequate phytoplankton by fungal parasites. Environ. Microbiol. 21, 949–958 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kagami, M., Von Elert, E., Ibelings, B. W., De Bruin, A. & Van Donk, E. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc. R. Soc. B Biol. Sci. 274, 1561–1566 (2007).

    Article 

    Google Scholar 

  • Carney, L. T. & Lane, T. W. Parasites in algae mass culture. Front. Microbiol. 5, 1–8 (2014).

    Article 

    Google Scholar 

  • Williams, D. M. Synedra, Ulnaria: definitions and descriptions – a partial resolution. Diatom Res. 26, 149–153 (2011).

    Article 

    Google Scholar 

  • Arar, E. J. & Collins, G. B. Method 445.0: In vitro determination of chlorophyll and phaeophytin a in marine and freshwater algae by fluorescence. U.S. Environemental Protection Agency, Cinncinnati, Ohio Revision 1.2, 1–22 (1997).

  • Klawonn, I., Dunker, S., Kagami, M., Grossart, H.-P., Van den Wyngaert, S. Intercomparison of two fluorescent dyes to visualize parasitic fungi (Chytridiomycota) on phytoplankton. Microb. Ecol. 85, 9–23 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alldredge, A. L. & Gotschalk, C. In situ settling behavior of marine snow. Limnol. Oceanogr. 33, 351 (1988).

    Article 

    Google Scholar 

  • Jackson, G. A. Coagulation in a rotating cylinder. Limnol. Oceanogr. Methods. 13, e10018 (2015).

    Article 

    Google Scholar 

  • Shanks, A. L. & Edmondson, E. W. Laboratory-made artificial marine snow: a biological model of the real thing. Mar. Biol. 101, 463–470 (1989).

    Article 

    Google Scholar 

  • Cowen, R. K. & Guigand, C. M. In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol. Oceanogr. Methods. 6, 126–132 (2008).

    Article 

    Google Scholar 

  • Jackson, G. A. & Burd, A. B. Simulating aggregate dynamics in ocean biogeochemical models. Prog. Oceanogr. 133, 55–65 (2015).

    Article 

    Google Scholar 

  • Petrik, C. M., Jackson, G. A. & Checkley, D. M. Aggregates and their distributions determined from LOPC observations made using an autonomous profiling float. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 74, 64–81 (2013).

    Article 

    Google Scholar 

  • Johnson, C. P., Li, X. & Logan, B. E. Settling velocities of fractal aggregates. Environ. Sci. Technol. 30, 1911–1918 (1996).

    Article 
    CAS 

    Google Scholar 

  • Laurenceau-Cornec, E. C. et al. New guidelines for the application of Stokes’ models to the sinking velocity of marine aggregates. Limnol. Oceanogr. 65, 1264–1285 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ploug, H. & Grossart, H. P. Bacterial production and respiration in suspended aggregates – A matter of the incubation method. Aquat. Microb. Ecol. 20, 21–29 (1999).

    Article 

    Google Scholar 

  • Berggren, M., Lapierre, J.-F. & del Giorgio, P. A. Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J. 6, 984–993 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • R.CoreTeam. R: A language and environment for statistical computing. Vienna, Austria. Retrieved from https://www.R-project.org/ (2016).


  • Source: Ecology - nature.com

    Potential benefits of public–private partnerships to improve the efficiency of urban wastewater treatment

    A more sustainable way to generate phosphorus