in

Diagnosing destabilization risk in global land carbon sinks

  • Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).

    Article 
    ADS 

    Google Scholar 

  • Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bastos, A. et al. Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange. Atmos. Chem. Phys. 19, 12361–12375 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Peñuelas, J. et al. Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environ. Exp. Bot. 152, 49–59 (2018).

    Article 

    Google Scholar 

  • Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dakos, V., Nes, E. H. & Scheffer, M. Flickering as an early warning signal. Theor. Ecol. 6, 309–317 (2013).

    Article 

    Google Scholar 

  • Sillmann, J., Daloz, A. S., Schaller, N. & Schwingshackl, C. in Climate Change 3rd edn (ed. Letcher, T. M.) 359–372 (Elsevier, 2021).

  • Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Buermann, W. et al. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink. Biogeosciences 13, 1597–1607 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).

    Article 
    ADS 

    Google Scholar 

  • Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).

    Article 
    ADS 

    Google Scholar 

  • Fernández-Martínez, M. et al. Spatial variability and controls over biomass stocks, carbon fluxes and resource-use efficiencies in forest ecosystems. Trees Struct. Funct. 28, 597–611 (2014).

    Article 

    Google Scholar 

  • Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568, 221–225 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).

    Article 
    ADS 

    Google Scholar 

  • Fernández‐Martínez, M. et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Glob. Change Biol. 26, 7067–7078 (2020).

    Article 
    ADS 

    Google Scholar 

  • Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 0048 (2017).

    Article 

    Google Scholar 

  • Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • IPBES: Summary for Policymakers. In The Global Assessment Report on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) 1–56 (IPBES, 2019).

  • Heath, J. P. Quantifying temporal variability in population abundances. Oikos 115, 573–581 (2006).

    Article 

    Google Scholar 

  • Fernández-Martínez, M., Vicca, S., Janssens, I. A., Martín-Vide, J. & Peñuelas, J. The consecutive disparity index, D, as measure of temporal variability in ecological studies. Ecosphere 9, e02527 (2018).

    Article 

    Google Scholar 

  • Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104, 5925–5930 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ackerman, D. E., Chen, X. & Millet, D. B. Global nitrogen deposition (2° × 2.5° grid resolution) simulated with GEOS-Chem for 1984–1986, 1994–1996, 2004–2006, and 2014–2016 (University of Minnesota, 2018); https://conservancy.umn.edu/handle/11299/197613.

  • Harris, I., Jones, P. D. D., Osborn, T. J. J. & Lister, D. H. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2013).

    Article 

    Google Scholar 

  • Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, K. et al. Causes of slowing-down seasonal CO2 amplitude at Mauna Loa. Glob. Change Biol. 26, 4462–4477 (2020).

    Article 
    ADS 

    Google Scholar 

  • Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957–aaf8957 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Peguero, G. et al. Fast attrition of springtail communities by experimental drought and richness–decomposition relationships across Europe. Glob. Change Biol. 25, 2727–2738 (2019).

    Article 
    ADS 

    Google Scholar 

  • Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Article 

    Google Scholar 

  • Cardinale, B. J. Biodiversity improves water quality through niche partitioning. Nature 472, 86–91 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Scheffer, M. Critical Transitions in Nature and Society (Princeton University Press, 2009).

  • Ostfeld, R. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chevallier, F. et al. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res. 115, D21307 (2010).

    Article 
    ADS 

    Google Scholar 

  • Chevallier, F. et al. Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophys. Res. Lett. 41, 1065–1070 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rödenbeck, C., Houweling, S., Gloor, M. & Heimann, M. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964 (2003).

    Article 
    ADS 

    Google Scholar 

  • Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. How does the terrestrial carbon exchange respond to interannual climatic variations? A quantification based on atmospheric CO2 data. Biogeosciences 15, 2481–2498 (2018).

  • Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article 
    ADS 

    Google Scholar 

  • Fernández‐Martínez, M. & Peñuelas, J. Measuring temporal patterns in ecology: the case of mast seeding. Ecol. Evol. 11, 2990–2996 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, S. N. Generalized Additive Models: An introduction with R 2nd edn (Chapman and Hall/CRC, 2017).

  • Ohlson, J. A. & Kim, S. Linear Valuation Without OLS: The Theil–Sen Estimation Approach (SSRN, 2015); https://ssrn.com/abstract=2276927.

  • Komsta, L. Package mblm, 0.12.1: Median-based linear models (2013).

  • Keeling, C. D. et al. in A History of Atmospheric CO2 and its effects on Plants, Animals, and Ecosystems (eds Ehleringer, J. R. et al.) 83–113 (Springer Verlag, 2005).

  • Leroux, B. G., Lei, X. & Breslow, N. in Statistical Models in Epidemiology, the Environment and Clinical Trials (eds Halloran, M. & Berry, D.) 179–191 (Springer-Verlag, 2000).

  • Lee, D. CARBayes: an R package for Bayesian spatial modeling with conditional autoregressive priors. J. Stat. Softw. 55, 1–24 (2013).

    Article 

    Google Scholar 

  • Gonzalez, A. et al. Scaling‐up biodiversity–ecosystem functioning research. Ecol. Lett. 15, ele.13456 (2020).

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    Study: Carbon-neutral pavements are possible by 2050, but rapid policy and industry action are needed

    Brown bear skin-borne secretions display evidence of individuality and age-sex variation