in

Malaria-driven adaptation of MHC class I in wild bonobo populations

  • World Health Organization. World malaria report 2022. (2022).

  • Kariuki, S. N. & Williams, T. N. Human genetics and malaria resistance. Hum. Gen. 139, 801–811 (2020).

    Article 

    Google Scholar 

  • Watson, J. A., White, N. J. & Dondorp, A. M. Falciparum malaria mortality in sub-Saharan Africa in the pretreatment era. Trends Parasitol. 38, 11–14 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sanchez-Mazas, A. A review of HLA allele and SNP associations with highly prevalent infectious diseases in human populations. Swiss Med. Wkly. 150, w20214 (2020).

    PubMed 

    Google Scholar 

  • Heijmans, C. M. C., de Groot, N. G. & Bontrop, R. E. Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. Int. J. Immunogenet. 47, 243–260 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neefjes, J., Jongsma, M. L., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Colonna, M. & Samaridis, J. Cloning of Immunoglobulin-Superfamily Members Associated with HLA-C and HLA-B Recognition by Human Natural Killer Cells. Science 268, 405–408 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hill, A. V. et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sanchez‐Mazas, A. et al. The HLA‐B landscape of Africa: signatures of pathogen‐driven selection and molecular identification of candidate alleles to malaria protection. Mol. Ecol. 26, 6238–6252 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Hill, A. V. et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360, 434–439 (1992).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Norman, P. J. et al. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLoS Genet. 9, e1003938 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharp, P. M., Plenderleith, L. J. & Hahn, B. H. Ape origins of human malaria. Annu. Rev. Microbiol. 74, 39–63 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, W. et al. Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nat. Commun. 8, 1635 (2017).

  • Liu, W. et al. African origin of the malaria parasite Plasmodium vivax. Nat. Commun. 5, 3346 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, W. et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol. Evol. 8, 1929–1939 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Nys, H. M. et al. Age-related effects on malaria parasite infection in wild chimpanzees. Biol. Lett. 9, 20121160 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Nys, H. M. et al. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 13, 1–6 (2014).

    Google Scholar 

  • Mapua, M. I. et al. Ecology of malaria infections in western lowland gorillas inhabiting Dzanga Sangha Protected Areas, Central African Republic. Parasitology 142, 890–900 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Scully, E. J. et al. The ecology and epidemiology of malaria parasitism in wild chimpanzee reservoirs. Commun. Biol. 5, 1020 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herbert, A. et al. Malaria-like symptoms associated with a natural Plasmodium reichenowi infection in a chimpanzee. Malar. J. 14, 1–8 (2015).

    Article 

    Google Scholar 

  • De Nys, H. M., Löhrich, T., Wu, D., Calvignac-Spencer, S. & Leendertz, F. H. Wild African great apes as natural hosts of malaria parasites: current knowledge and research perspectives. Primate Biol. 4, 47–59 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Takemoto, H., Kawamoto, Y. & Furuichi, T. How did bonobos come to range south of the congo river? Reconsideration of the divergence of Pan paniscus from other Pan populations. Evol. Anthropol. 24, 170–184 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Takemoto, H., Kawamoto, Y. & Furuichi, T. The formation of Congo River and the origin of bonobos: A new hypothesis. in Bonobos: unique in mind, brain, and behavior (eds. Hare, B. & Yamamoto, S.) 235-248 (Oxford University Press, 2017).

  • Takemoto, H. et al. The mitochondrial ancestor of bonobos and the origin of their major haplogroups. PLoS One. 12, e0174851 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pilbrow, V. & Groves, C. Evidence for divergence in populations of bonobos (Pan paniscus) in the Lomami-Lualaba and Kasai-Sankuru regions based on preliminary analysis of craniodental variation. Int. J. Primatol. 34, 1244–1260 (2013).

    Article 

    Google Scholar 

  • de Groot, N. G., Stevens, J. M. & Bontrop, R. E. Does the MHC confer protection against malaria in bonobos? Trends Immunol. 39, 768–771 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Sidney, J., Peters, B., Frahm, N., Brander, C. & Sette, A. HLA class I supertypes: a revised and updated classification. BMC Immunol. 9, 1 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wroblewski, E. E. et al. Bonobos maintain immune system diversity with three functional types of MHC-B. J. Immunol. 198, 3480–3493 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bjorkman, P. et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329, 512–518 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guethlein, L. A., Norman, P. J., Hilton, H. G. & Parham, P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol. Rev. 267, 259–282 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wroblewski, E. E. et al. Signature patterns of MHC diversity in three Gombe communities of wild chimpanzees reflect fitness in reproduction and immune defense against SIVcpz. PLoS. Biol. 13, e1002144 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J. Virol. 18, 10776–10791 (2012).

    Article 

    Google Scholar 

  • Yang, C. et al. Sequence variations in the non-repetitive regions of the liver stage-specific antigen-1 (LSA-1) of Plasmodium falciparum from field isolates,. Mol. Biochem Parasitol. 71, 291–294 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fidock, D. A. et al. Plasmodium falciparum liver stage antigen-1 is well conserved and contains potent B and T cell determinants. J. Immunol. 153, 190–204 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aurrecoechea, C. et al. PlasmoDB: a functional genomic database for malaria parasites. Nucl. Acids Res. 37, D539–D543 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hughes, A. L. & Yeager, M. Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet. 32, 415–435 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trowsdale, J. The MHC, disease and selection. Immunol. Lett. 137, 1–8 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crow, J. & Kimura, M. An Introduction To Population Genetics Theory. (Alpha Editions, 1970).

  • Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature 499, 471 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Digitale, J. C. et al. HLA alleles B* 53:01 and C* 06:02 are associated with higher risk of P. falciparum parasitemia in a cohort in Uganda. Front. Immunol. 12, 650028 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyke, K. E. et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens. 77, 562–571 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osafo-Addo, A. D. et al. HLA-DRB1*04 allele is associated with severe malaria in northern Ghana. Am. J. Trop. Med. 78, 251–255 (2008).

    Article 

    Google Scholar 

  • Jallow, M. et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat. Genet. 41, 657–665 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malaria Genomic Epidemiology Network. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nat. Commun. 10, 5732 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ravenhall, M. et al. Novel genetic polymorphisms associated with severe malaria and under selective pressure in North-eastern Tanzania. PLoS Genet. 14, e1007172 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Damena, D., Denis, A., Golassa, L. & Chimusa, E. R. Genome-wide association studies of severe P. falciparum malaria susceptibility: progress, pitfalls and prospects. BMC Med. Genom. 12, 1–14 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kennedy, A. E., Ozbek, U. & Dorak, M. T. What has GWAS done for HLA and disease associations? Int. J. Immunogenet. 44, 195–211 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tukwasibwe, S. et al. Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria. Cell. Mol. Immunol. 17, 799–806 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leffler, E. M. et al. Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science 339, 1578–1582 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phillips, M. et al. Malaria. Nat. Rev. Dis. Prim. 3, 17050 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Samandary, S. et al. Associations of HLA-A, HLA-B and HLA-C alleles frequency with prevalence of herpes simplex virus infections and diseases across global populations: implication for the development of an universal CD8+ T-cell epitope-based vaccine. Hum. Immunol. 75, 715–729 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miranda-Katz, M. et al. Novel HLA-B7-restricted human metapneumovirus epitopes enhance viral clearance in mice and are recognized by human CD8+ T cells. Sci. Rep. 11, 20769 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Appanna, R., Ponnampalavanar, S., Lum Chai See, L. & Sekaran, S. D. Susceptible and protective HLA class 1 alleles against dengue fever and dengue hemorrhagic fever patients in a Malaysian population. PloS One 5, e13029 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, X. et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. NEJM 344, 1668–1675 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sharp, P. M. & Hahn, B. H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barbian, H. J. et al. CHIIMP: An automated high‐throughput microsatellite genotyping platform reveals greater allelic diversity in wild chimpanzees. Ecol. Evol. 8, 7946–7963 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan, K. M., Mannucci, A., Kimpton, C. P. & Gill, P. A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques 15, 636–638 (1993). 640-631.

    CAS 
    PubMed 

    Google Scholar 

  • de Groot, N. G. et al. Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenet 72, 25–36 (2020).

    Article 

    Google Scholar 

  • Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thomsen, M., Lundegaard, C., Buus, S., Lund, O. & Nielsen, M. MHCcluster, a method for functional clustering of MHC molecules. Immunogenet 65, 655–665 (2013).

    Article 
    CAS 

    Google Scholar 

  • Maibach, V. & Vigilant, L. Reduced bonobo MHC class I diversity predicts a reduced viral peptide binding ability compared to chimpanzees. BMC Evol. Biol. 19, 1–15 (2019).

    Article 

    Google Scholar 

  • Wroblewski, E. E., Parham, P. & Guethlein, L. A. Two to tango: co-evolution of hominid natural killer cell receptors and MHC. Front. Immunol. 10 https://doi.org/10.3389/fimmu.2019.00177 (2019).

  • Raymond, M. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).

    Article 

    Google Scholar 

  • Rousset, F. GENEPOP’007: a complete re‐implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Wilson, M. L. et al. Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature 513, 414–417 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, L., Samuni, L., Lucchesi, S., Deschner, T. & Surbeck, M. Love thy neighbour: behavioural and endocrine correlates of male strategies during intergroup encounters in bonobos. Anim. Behav. 187, 319–330 (2022).

    Article 

    Google Scholar 

  • Lucchesi, S. et al. Beyond the group: how food, mates, and group size influence intergroup encounters in wild bonobos. Behav. Ecol. 31, 519–532 (2020).

    Article 

    Google Scholar 

  • Plumptre, A., Robbins, M. M. & Williamson, E. A. Gorilla beringei. The IUCN Red List of Threatened Species 2019: e.T39994A115576640. (2019).

  • Maisels, F., Bergl, R. A. & Williamson, E. A. Gorilla gorilla (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2018: e.T9404A136250858. (2018).

  • Humle, T., Maisels, F., Oates, J.F., Plumptre, A. & Williamson, E.A. Pan troglodytes (errata version published in 2018). The IUCN Red List of Threatened Species 2016: e.T15933A129038584. (2016).

  • Fruth, B. et al. Pan paniscus (errata version published in 2016). The IUCN Red List of Threatened Species 2016: e.T15932A102331567. (2016).


  • Source: Ecology - nature.com

    Rethinking river water temperature in a changing, human-dominated world

    Improving health outcomes by targeting climate and air pollution simultaneously