Céréghino, R., Biggs, J., Oertli, B. & Declerck, S. The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. In Pond Conservation in Europe (eds Oertli, B. et al.) 1–6 (Springer Netherlands, 2007).
Olmo, C. et al. The environmental framework of temporary ponds: A tropical-Mediterranean comparison. CATENA 210, 105845 (2022).
Google Scholar
Griffiths, R. A. Temporary ponds as amphibian habitats. Aquat. Conserv. Mar. Freshw. Ecosyst. 7, 119–126 (1997).
Boix, D. et al. Conservation of temporary wetlands. In Encyclopedia of the World’s Biomes 279–294 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-409548-9.12003-2.
Google Scholar
Fritz, K. A. & Whiles, M. R. Reciprocal subsidies between temporary ponds and riparian forests. Limnol. Oceanogr. 66, 3149–3161 (2021).
Google Scholar
Jeffries, M. The spatial and temporal heterogeneity of macrophyte communities in thirty small, temporary ponds over a period of ten years. Ecography 31, 765–775 (2008).
Hassall, C. The ecology and biodiversity of urban ponds. WIREs Water 1, 187–206 (2014).
Lukács, B. A. et al. Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary). Limnologica 53, 74–83 (2015).
Florencio, M., Díaz-Paniagua, C., Gómez-Rodríguez, C. & Serrano, L. Biodiversity patterns in a macroinvertebrate community of a temporary pond network. Insect Conserv. Divers. 7, 4–21 (2014).
Meland, S., Sun, Z., Sokolova, E., Rauch, S. & Brittain, J. E. A comparative study of macroinvertebrate biodiversity in highway stormwater ponds and natural ponds. Sci. Total Environ. 740, 140029 (2020).
Google Scholar
Hahn, M. W. The microbial diversity of inland waters. Curr. Opin. Biotechnol. 17, 256–261 (2006).
Google Scholar
Felföldi, T. Microbial communities of soda lakes and pans in the Carpathian Basin: A review. Biol. Futura 71, 393–404 (2020).
Grossart, H., Massana, R., McMahon, K. D. & Walsh, D. A. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol. Oceanogr. 65, S2–S20 (2020).
Google Scholar
Marrone, F., Fontaneto, D. & Naselli-Flores, L. Cryptic diversity, niche displacement and our poor understanding of taxonomy and ecology of aquatic microorganisms. Hydrobiologia https://doi.org/10.1007/s10750-022-04904-x (2022).
Google Scholar
Ducklow, H. Microbial services: Challenges for microbial ecologists in a changing world. Aquat. Microb. Ecol. 53, 13–19 (2008).
Google Scholar
Bodelier, P. L. E. Toward understanding, managing, and protecting microbial ecosystems. Front. Microbiol. 2, 80 (2011).
Google Scholar
Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005).
Google Scholar
Trivedi, C. et al. Losses in microbial functional diversity reduce the rate of key soil processes. Soil Biol. Biochem. 135, 267–274 (2019).
Google Scholar
Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27, 337–363 (1996).
Chase, J. M. Drought mediates the importance of stochastic community assembly. Proc. Natl. Acad. Sci. 104, 17430–17434 (2007).
Google Scholar
Tweed, S., Grace, M., Leblanc, M., Cartwright, I. & Smithyman, D. The individual response of saline lakes to a severe drought. Sci. Total Environ. 409, 3919–3933 (2011).
Google Scholar
Aguilar, P., Acosta, E., Dorador, C. & Sommaruga, R. Large differences in bacterial community composition among three nearby extreme waterbodies of the High Andean Plateau. Front. Microbiol. 7, 976 (2016).
Google Scholar
Boros, E., Balogh, K., Vörös, L. & Horváth, Z. Multiple extreme environmental conditions of intermittent soda pans in the Carpathian Basin (Central Europe). Limnologica 62, 38–46 (2017).
Google Scholar
Lengyel, E., Pálmai, T., Padisák, J. & Stenger-Kovács, C. Annual hydrological cycle of environmental variables in astatic soda pans (Hungary). J. Hydrol. 575, 1188–1199 (2019).
Google Scholar
Vieira-Silva, S. & Rocha, E. P. C. The Systemic imprint of growth and its uses in ecological (Meta)genomics. PLoS Genet. 6, e1000808 (2010).
Google Scholar
Cunillera-Montcusí, D. et al. Freshwater salinisation: A research agenda for a saltier world. Trends Ecol. Evol. 37, 440–453 (2022).
Google Scholar
Šolić, M. et al. Structure of microbial communities in phosphorus-limited estuaries along the eastern Adriatic coast. J. Mar. Biol. Assoc. U.K. 95, 1565–1578 (2015).
Traving, S. J. et al. The Effect of increased loads of dissolved organic matter on estuarine microbial community composition and function. Front. Microbiol. 8, 351 (2017).
Google Scholar
Zhang, G. et al. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ. Microbiol. 23, 1020–1037 (2021).
Google Scholar
Tkavc, R. et al. Bacterial communities in the ‘petola’ microbial mat from the Sečovlje salterns (Slovenia): Bacterial communities in the ‘petola’. FEMS Microbiol. Ecol. 75, 48–62 (2011).
Google Scholar
Ali, I. et al. Comparative study of physical factors and microbial diversity of four man-made extreme ecosystems. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 86, 767–778 (2016).
Paul, V., Banerjee, Y., Ghosh, P. & Busi, S. B. Depthwise microbiome and isotopic profiling of a moderately saline microbial mat in a solar saltern. Sci. Rep. 10, 20686 (2020).
Google Scholar
Stenger-Kovács, C. et al. Vanishing world: Alkaline, saline lakes in Central Europe and their diatom assemblages. Inland Waters 4, 383–396 (2014).
Stenger-Kovács, C., Hajnal, É., Lengyel, E., Buczkó, K. & Padisák, J. A test of traditional diversity measures and taxonomic distinctness indices on benthic diatoms of soda pans in the Carpathian basin. Ecol. Indic. 64, 1–8 (2016).
Szabó, B., Lengyel, E., Padisák, J., Vass, M. & Stenger-Kovács, C. Structuring forces and β-diversity of benthic diatom metacommunities in soda pans of the Carpathian Basin. Eur. J. Phycol. 53, 219–229 (2018).
Szabó, A. et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649 (2017).
Google Scholar
Szabó, A. et al. Grazing pressure-induced shift in planktonic bacterial communities with the dominance of acIII-A1 actinobacterial lineage in soda pans. Sci. Rep. 10, 19871 (2020).
Google Scholar
Benlloch, S. et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4, 349–360 (2002).
Google Scholar
Horváth, Z. et al. Opposing patterns of zooplankton diversity and functioning along a natural stress gradient: When the going gets tough, the tough get going. Oikos 123, 461–471 (2014).
Mo, Y. et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome 9, 128 (2021).
Google Scholar
Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).
Google Scholar
Gómez-Rodríguez, C., Bustamante, J. & Díaz-Paniagua, C. Evidence of hydroperiod shortening in a preserved system of temporary ponds. Remote Sens. 2, 1439–1462 (2010).
Google Scholar
Finger Higgens, R. A. et al. Changing lake dynamics indicate a drier arctic in western greenland. J. Geophys. Res. Biogeosciences 124, 870–883 (2019).
Google Scholar
Zacharias, I. & Zamparas, M. Mediterranean temporary ponds. A disappearing ecosystem. Biodivers. Conserv. 19, 3827–3834 (2010).
Horváth, Z., Ptacnik, R., Vad, C. F. & Chase, J. M. Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecol. Lett. 22, 1019–1027 (2019).
Google Scholar
Grillas, P., Rhazi, L., Lefebvre, G., El Madihi, M. & Poulin, B. Foreseen impact of climate change on temporary ponds located along a latitudinal gradient in Morocco. Inland Waters 11, 492–507 (2021).
Google Scholar
Xi, Y., Peng, S., Ciais, P. & Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Change 11, 45–51 (2021).
Google Scholar
Zhong, Y. et al. Shrinking habitats and native species loss under climate change: a multifactorial risk Assessment of China’s inland wetlands. 28 (2022).
Atkinson, S. T. et al. Substantial long-term loss of alpha and gamma diversity of lake invertebrates in a landscape exposed to a drying climate. Glob. Change Biol. 27, 6263–6279 (2021).
Google Scholar
Whiting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration: Greenhouse carbon balance of wetlands. Tellus B 53, 521–528 (2001).
Google Scholar
Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landsc. Ecol. 28, 583–597 (2013).
Ardón, M., Helton, A. M. & Bernhardt, E. S. Salinity effects on greenhouse gas emissions from wetland soils are contingent upon hydrologic setting: A microcosm experiment. Biogeochemistry 140, 217–232 (2018).
Jeppesen, E., Beklioğlu, M., Özkan, K. & Akyürek, Z. Salinization increase due to climate change will have substantial negative effects on inland waters: A call for multifaceted research at the local and global scale. Innovation 1, 100030 (2020).
Google Scholar
Boros, E., Horváth, Z., Wolfram, G. & Vörös, L. Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin. Ann. Limnol. Int. J. Limnol. 50, 59–69 (2014).
Sorokin, D. Y. et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18, 791–809 (2014).
Google Scholar
Horváth, Z., Vad, C. F., Vörös, L. & Boros, E. The keystone role of anostracans and copepods in European soda pans during the spring migration of waterbirds: The keystone trophic role of crustaceans in European soda pans. Freshw. Biol. 58, 430–440 (2013).
Stenger-Kovács, C. & Lengyel, E. Taxonomical and distribution guide of diatoms in soda pans of Central Europe. Stud. Bot. Hung. 46, 3–203 (2015).
Szabó, B. et al. Microbial stowaways: Waterbirds as dispersal vectors of aquatic pro- and microeukaryotic communities. J. Biogeogr. 49, 1286–1298 (2022).
Williams, D. D. The Ecology of Temporary Waters (Springer Netherlands, 1987).
Hammer, U. T. The effects of climate change on the salinity, water levels and biota of Canadian prairie saline lakes. SIL Proc. 1922–2010(24), 321–326 (1990).
Schallenberg, M., Hall, C. & Burns, C. Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Mar. Ecol. Prog. Ser. 251, 181–189 (2003).
Google Scholar
Felföldi, T., Somogyi, B., Márialigeti, K. & Vörös, L. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). J. Limnol. 68, 385 (2009).
Somogyi, B. et al. Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature. Aquat. Ecol. 43, 735–744 (2009).
Google Scholar
Pálffy, K. et al. Unique picoeukaryotic algal community under multiple environmental stress conditions in a shallow, alkaline pan. Extremophiles 18, 111–119 (2014).
Google Scholar
Padisák, J. & Naselli-Flores, L. Phytoplankton in extreme environments: Importance and consequences of habitat permanency. Hydrobiologia 848, 157–176 (2021).
Olli, K., Ptacnik, R., Klais, R. & Tamminen, T. Phytoplankton species richness along coastal and estuarine salinity continua. Am. Nat. 194, E41–E51 (2019).
Google Scholar
Olli, K., Tamminen, T. & Ptacnik, R. Predictable shifts in diversity and ecosystem function in phytoplankton communities along coastal salinity continua. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10242 (2022).
Google Scholar
Tikhonenkov, D. V., Burkovsky, I. V. & Mazei, Y. A. Is there a relation between the distribution of heterotrophic flagellates and the zonation of a marine intertidal flat?. Oceanology 55, 13 (2015).
Arndt, H. et al. Functional diversity of heterotrophic flagellates in aquatic ecosystems. In Flagellates 252–280 (CRC Press, 2000). https://doi.org/10.1201/9781482268225-18.
Google Scholar
JeLee, W. & Patterson, D. J. Diversity and geographic distribution of free-living heterotrophic flagellates—Analysis by PRIMER. Protist 149, 229–244 (1998).
Google Scholar
Azovsky, A. I., Tikhonenkov, D. V. & Mazei, Y. A. An estimation of the global diversity and distribution of the smallest eukaryotes: Biogeography of marine benthic heterotrophic flagellates. Protist 167, 411–424 (2016).
Google Scholar
Tikhonenkov, D. V., Mazei, Y. A. & Mylnikov, A. P. Species diversity of heterotrophic flagellates in White Sea littoral sites. Eur. J. Protistol. 42, 191–200 (2006).
Google Scholar
Van der Gucht, K. et al. The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Proc. Natl. Acad. Sci. 104, 20404–20409 (2007).
Google Scholar
Vanschoenwinkel, B. et al. Species sorting in space and time—The impact of disturbance regime on community assembly in a temporary pool metacommunity. J. North Am. Benthol. Soc. 29, 1267–1278 (2010).
Datry, T. et al. Metacommunity patterns across three neotropical catchments with varying environmental harshness. Freshw. Biol. 61, 277–292 (2016).
Hansen, H. P. & Koroleff, F. Determination of nutrients. In Methods of Seawater Analysis (eds Grasshoff, K. et al.) 159–228 (Wiley-VCH Verlag GmbH, 1999).
Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. Standard methods for examination of water and wastewater. 20th ed. http://ipkosar.ir/jspui/handle/961944/280820 (1999).
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: Primers for marine microbiome studies. Environ. Microbiol. 18, 1403–1414 (2016).
Google Scholar
Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
Ray, J. L. et al. Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities. Mol. Ecol. 25, 5585–5602 (2016).
Google Scholar
Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One 9, e87624 (2014).
Google Scholar
Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
Google Scholar
Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence sata on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).
Google Scholar
Kunin, V., Engelbrektson, A., Ochman, H. & Hugenholtz, P. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12, 118–123 (2010).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
Google Scholar
Rohwer, R. R., Hamilton, J. J., Newton, R. J. & McMahon, K. D. TaxAss: Leveraging a custom freshwater database achieves fine-scale taxonomic resolution. mSphere 3, e00327-18 (2018).
Google Scholar
Guillou, L. et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (2020).
Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using Adonis. Pairwise Adonis R package version 0.4. R package. https://cran.r-project.org/web/packages/pairwise/index.html (2017).
Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. ggpubr R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr (2020).
Burian, A. et al. Predation increases multiple components of microbial diversity in activated sludge communities. ISME J. 16, 1086–1094 (2022).
Google Scholar
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology, picante R package version 1.8.2. Bioinformatics 26, 1463–1464. https://cran.r-project.org/web/packages/picante/index.html (2010).
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. 4th ed. MASS R package version 7.3-54 (Springer, 2002). https://cran.r-project.org/web/packages/MASS/index.html. ISBN 0-387-95457-0.
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. mgcv R package version 1.8-38. J. R. Stat. Soc. B 73(1), 3–36. https://cran.r-project.org/web/packages/mgcv/index.html (2011).
Gu, Z. Complex heatmap visualization. iMeta 1 (2022).
R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2022). https://www.R-project.org/.
Source: Ecology - nature.com