Witzany, G. Biocommunication of Animals (Springer, 2014).
Google Scholar
Mothersill, C., Smith, R. W., Agnihotri, N. & Seymour, C. B. Characterization of a radiation-induced stress response communicated in vivo between zebrafish. Environ. Sci. Technol. 41, 3382–3387 (2007).
Google Scholar
Matveev, V. An investigation of allelopathic effects of Daphnia. Freshw Biol. 29, 99–105 (1993).
Google Scholar
Surinov, B. P., Isaeva, V. G. & Dukhova, N. N. Post radiation immunosuppressive and attractive volatile secretions: The “bystander effect” or allelopathy in groups of animals. Dokl. Biol. Sci. 400, 28–30 (2005).
Google Scholar
Mothersill, C. et al. Communication of radiation-induced stress or bystander signals between fish in vivo. Environ. Sci. Technol. 40, 6859–6864 (2006).
Google Scholar
Choi, V. W., Cheng, S. H. & Yu, K. N. Radioadaptive response induced by alpha-particle-induced stress communicated in vivo between zebrafish embryos. Environ. Sci. Technol. 44, 8829–8834 (2010).
Google Scholar
Peng, Y. et al. Cysteine protease cathepsin B mediates radiation-induced bystander effects. Nature 547, 458–462 (2017).
Google Scholar
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The Structure of the Nervous System of the Nematode Caenorhabditis elegans (Cambridge University Press, 1986).
Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. C. Elegans (Spring Harbor Laboratory Press, 1997).
Bargmann, C. I. & Mori, I. Chemotaxis and thermotaxis. In C. elegans II (eds Riddle, D. L. et al.) (Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 1997).
Leung, M. C. K. et al. Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicol. Sci. 106, 5–28 (2008).
Google Scholar
Zhang, C. et al. The olfactory signal transduction for attractive odorants in Caenorhabditis elegans. Biotechnol. Adv. 32, 290–295 (2014).
Google Scholar
Starich, T. A. et al. Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics 139, 171–188 (1995).
Google Scholar
Mori, I. & Ohshima, Y. Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. BioEssays 19, 1055–1064 (1997).
Google Scholar
Simon, J. M. & Sternberg, P. W. Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99, 1598–1603 (2002).
Google Scholar
White, J. Q. et al. The sensory circuitry for sexual attraction in C. elegans males. Curr. Biol. 17, 1847–1857 (2007).
Google Scholar
Chasnov, J. R., So, W. K., Chan, C. M. & Chow, K. L. The species, sex, and stage specificity of a Caenorhabditis sex pheromone. Proc. Natl. Acad. Sci. USA 104, 6730–6735 (2007).
Google Scholar
Srinivasan, J. et al. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454, 1115–1118 (2008).
Google Scholar
Pungaliya, C. et al. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 106, 7708–7713 (2009).
Google Scholar
Srinivasan, J. et al. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS. Biol. 10, e1001237 (2012).
Google Scholar
Leighton, D. H., Choe, A., Wu, S. Y. & Sternberg, P. W. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 111, 17905–17910 (2014).
Google Scholar
Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009).
Google Scholar
von Reuss, S. H. et al. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 134, 1817–1824 (2012).
Google Scholar
Peckol, E. L., Troemel, E. R. & Bargmann, C. I. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 98, 11032–11038 (2001).
Google Scholar
Yamada, K. et al. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans. Science 329, 1647–1650 (2010).
Google Scholar
Ludewig, A. H. et al. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc. Natl. Acad. Sci. USA 110, 5522–5527 (2013).
Google Scholar
Artyukhin, A. B. et al. Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans. J. Biol. Chem. 288, 18778–18783 (2013).
Google Scholar
Bargmann, C. I., Hartwieg, E. & Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527 (1993).
Google Scholar
Troemel, E. R., Kimmel, B. E. & Bargmann, C. I. Reprogramming chemotaxis responses: Sensory neurons define olfactory preferences in C. elegans. Cell 91, 161–169 (1997).
Google Scholar
Wes, P. D. & Bargmann, C. I. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410, 698–701 (2001).
Google Scholar
Tang, H. Q. et al. Enhancement of DNA damage repair potential in germ cells of Caenorhabditis elegans by a volatile signal from their irradiated partners. DNA Repair 86, 102755 (2020).
Google Scholar
Byerly, L., Scherer, S. & Russell, R. L. The life cycle of the nematode Caenorhabditis elegans: ii. A simplified method for mutant characterization. Dev. Biol. 51, 34–48 (1976).
Google Scholar
Grewal, P. S. & Wright, D. J. Migration of Caenorhabditis elegans (Nematoda: Rhabditidae) larvae towards bacteria and the nature of the bacterial stimulus. Fundam. Appl. Nematol. 15, 159–166 (1992).
Ludewig, A. H. & Schroeder, F. C. Ascaroside signaling in C. elegans. WormBook 18, 1–22 (2013).
Google Scholar
Hubbard, E. J. & Greenstein, D. Introduction to the germ line. WormBook 1, 1–4 (2005).
Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans: Past, present and future. Trends. Genet. 14, 410–416 (1998).
Google Scholar
Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R. & Hengartner, M. O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011–1022 (1999).
Google Scholar
Takanami, T., Mori, A., Takahashi, H. & Higashitani, A. Hyper-resistance of meiotic cells to radiation due to a strong expression of a single recA-like gene in Caenorhabditis elegans. Nucleic. Acids. Res. 28, 4232–4236 (2000).
Google Scholar
O’Neil, N., Rose, A., DNA repair (January 13, 2006), WormBook, ed. The C. elegans Research Community, WormBook, https://doi.org/10.1895/wormbook.1.54.1, http://www.wormbook.org.
Craig, A. L., Moser, S. C., Bailly, A. P. & Gartner, A. Methods for studying the DNA damage response in the Caenorhabdatis elegans germ line. Methods Cell Biol. 107, 321–352 (2012).
Google Scholar
Joo, H. J., Park, S., Kim, K. Y., Kim, M. Y. & Paik, Y. K. HSF-1 is involved in regulation of ascaroside pheromone biosynthesis by heat stress in Caenorhabditis elegans. Biochem. J. 473, 789–796 (2016).
Google Scholar
Prahlad, V., Cornelius, T. & Morimoto, R. I. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 9, 811–814 (2008).
Google Scholar
Vakkayil, K. L. & Hoppe, T. Temperature-dependent regulation of proteostasis and longevity. Front. Aging 3, 853588 (2022).
Google Scholar
Pagliuso, D. C., Bodas, D. M. & Pasquinelli, A. E. Recovery from heat shock requires the microRNA pathway in Caenorhabditis elegans. PLoS Genet. 17(8), e1009734 (2021).
Google Scholar
Singh, V. & Aballay, A. Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc. Natl. Acad. Sci. USA 103(35), 13092–13097 (2006).
Google Scholar
Kurop, M. K., Huyen, C. M., Kelly, J. H. & Blagg, B. S. J. The heat shock response and small molecule regulators. Eur. J. Med. Chem. 226, 113846 (2021).
Google Scholar
Howard, A. C., Rollins, J., Snow, S., Castor, S. & Rogers, A. N. Reducing translation through eIF4G/IFG-1 improves survival under ER stress that depends on heat shock factor HSF-1 in Caenorhabditis elegans. Aging Cell 15(6), 1027–1038 (2016).
Google Scholar
Jo, H., Shim, J., Lee, J. H., Lee, J. & Kim, J. B. IRE-1 and HSP-4 contribute to energy homeostasis via fasting-induced lipases in C. elegans. Cell Metab. 9(5), 440–448 (2009).
Google Scholar
Al-Amin, M., Kawasaki, I., Gong, J. & Shim, Y. H. Caffeine induces the stress response and up-regulates heat shock proteins in Caenorhabditis elegans. Mol. Cells. 39(2), 163–168 (2016).
Google Scholar
Dues, D. J. et al. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways. Aging (Albany NY). 8(4), 777–795 (2016).
Google Scholar
Prahlad, V. & Morimoto, R. I. Integrating the stress response: Lessons for neurodegenerative diseases from C. elegans. Trends. Cell. Biol. 19, 52–61 (2009).
Google Scholar
Younis, A. E. et al. Stage-specific excretory-secretory small heat shock proteins from the parasitic nematode Strongyloides ratti–putative links to host’s intestinal mucosal defense system. FEBS. J. 278, 3319–3336 (2011).
Google Scholar
Komarova, E. Y. et al. Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell Stress Chaper. 9, 265–275 (2004).
Google Scholar
Edkins, A. L., Price, J. T., Pockley, A. G. & Blatch, G. L. Heat shock proteins as modulators and therapeutic targets of chronic disease: An integrated perspective. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 19, 1738 (2018).
Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaccmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).
Google Scholar
Pierotti, M. A. & Dragani, T. A. Genetics and cancer. Curr. Opin. Oncol. 4, 127–133 (1992).
Google Scholar
Roemer, K. Mutant p53: Gain-of-function oncoproteins and wild-type p53 inactivators. Biol. Chem. 380, 879–887 (1999).
Google Scholar
Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).
Google Scholar
Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J. & Hengartner, M. O. A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol. Cell 5, 435–443 (2000).
Google Scholar
Lettre, G. & Hengartner, M. O. Developmental apoptosis in C. elegans: A complex CEDnario. Nat. Rev. Mol. Cell Biol. 7, 97–108 (2006).
Google Scholar
Conradt, B. & Xue, D. Programmed Cell Death 1–13 (WormBook, 2005).
Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003).
Google Scholar
Sharpless, N. E. & DePinho, R. A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30 (1999).
Google Scholar
Kaletta, T. & Hengartner, M. O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5, 387–399 (2006).
Google Scholar
Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
Google Scholar
Source: Ecology - nature.com