in

Investigation into the communication between unheated and heat-stressed Caenorhabditis elegans via volatile stress signals

  • Witzany, G. Biocommunication of Animals (Springer, 2014).

    Book 

    Google Scholar 

  • Mothersill, C., Smith, R. W., Agnihotri, N. & Seymour, C. B. Characterization of a radiation-induced stress response communicated in vivo between zebrafish. Environ. Sci. Technol. 41, 3382–3387 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Matveev, V. An investigation of allelopathic effects of Daphnia. Freshw Biol. 29, 99–105 (1993).

    Article 

    Google Scholar 

  • Surinov, B. P., Isaeva, V. G. & Dukhova, N. N. Post radiation immunosuppressive and attractive volatile secretions: The “bystander effect” or allelopathy in groups of animals. Dokl. Biol. Sci. 400, 28–30 (2005).

    Article 

    Google Scholar 

  • Mothersill, C. et al. Communication of radiation-induced stress or bystander signals between fish in vivo. Environ. Sci. Technol. 40, 6859–6864 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Choi, V. W., Cheng, S. H. & Yu, K. N. Radioadaptive response induced by alpha-particle-induced stress communicated in vivo between zebrafish embryos. Environ. Sci. Technol. 44, 8829–8834 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Peng, Y. et al. Cysteine protease cathepsin B mediates radiation-induced bystander effects. Nature 547, 458–462 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The Structure of the Nervous System of the Nematode Caenorhabditis elegans (Cambridge University Press, 1986).

    Google Scholar 

  • Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. C. Elegans (Spring Harbor Laboratory Press, 1997).

    Google Scholar 

  • Bargmann, C. I. & Mori, I. Chemotaxis and thermotaxis. In C. elegans II (eds Riddle, D. L. et al.) (Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 1997).

    Google Scholar 

  • Leung, M. C. K. et al. Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicol. Sci. 106, 5–28 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C. et al. The olfactory signal transduction for attractive odorants in Caenorhabditis elegans. Biotechnol. Adv. 32, 290–295 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Starich, T. A. et al. Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics 139, 171–188 (1995).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mori, I. & Ohshima, Y. Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. BioEssays 19, 1055–1064 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Simon, J. M. & Sternberg, P. W. Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99, 1598–1603 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • White, J. Q. et al. The sensory circuitry for sexual attraction in C. elegans males. Curr. Biol. 17, 1847–1857 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chasnov, J. R., So, W. K., Chan, C. M. & Chow, K. L. The species, sex, and stage specificity of a Caenorhabditis sex pheromone. Proc. Natl. Acad. Sci. USA 104, 6730–6735 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Srinivasan, J. et al. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454, 1115–1118 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pungaliya, C. et al. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 106, 7708–7713 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Srinivasan, J. et al. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS. Biol. 10, e1001237 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leighton, D. H., Choe, A., Wu, S. Y. & Sternberg, P. W. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 111, 17905–17910 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • von Reuss, S. H. et al. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 134, 1817–1824 (2012).

    Article 

    Google Scholar 

  • Peckol, E. L., Troemel, E. R. & Bargmann, C. I. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 98, 11032–11038 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamada, K. et al. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans. Science 329, 1647–1650 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ludewig, A. H. et al. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc. Natl. Acad. Sci. USA 110, 5522–5527 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Artyukhin, A. B. et al. Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans. J. Biol. Chem. 288, 18778–18783 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bargmann, C. I., Hartwieg, E. & Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Troemel, E. R., Kimmel, B. E. & Bargmann, C. I. Reprogramming chemotaxis responses: Sensory neurons define olfactory preferences in C. elegans. Cell 91, 161–169 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wes, P. D. & Bargmann, C. I. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410, 698–701 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, H. Q. et al. Enhancement of DNA damage repair potential in germ cells of Caenorhabditis elegans by a volatile signal from their irradiated partners. DNA Repair 86, 102755 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Byerly, L., Scherer, S. & Russell, R. L. The life cycle of the nematode Caenorhabditis elegans: ii. A simplified method for mutant characterization. Dev. Biol. 51, 34–48 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grewal, P. S. & Wright, D. J. Migration of Caenorhabditis elegans (Nematoda: Rhabditidae) larvae towards bacteria and the nature of the bacterial stimulus. Fundam. Appl. Nematol. 15, 159–166 (1992).

    Google Scholar 

  • Ludewig, A. H. & Schroeder, F. C. Ascaroside signaling in C. elegans. WormBook 18, 1–22 (2013).

    Article 

    Google Scholar 

  • Hubbard, E. J. & Greenstein, D. Introduction to the germ line. WormBook 1, 1–4 (2005).

    Google Scholar 

  • Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans: Past, present and future. Trends. Genet. 14, 410–416 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R. & Hengartner, M. O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011–1022 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takanami, T., Mori, A., Takahashi, H. & Higashitani, A. Hyper-resistance of meiotic cells to radiation due to a strong expression of a single recA-like gene in Caenorhabditis elegans. Nucleic. Acids. Res. 28, 4232–4236 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Neil, N., Rose, A., DNA repair (January 13, 2006), WormBook, ed. The C. elegans Research Community, WormBook, https://doi.org/10.1895/wormbook.1.54.1, http://www.wormbook.org.

  • Craig, A. L., Moser, S. C., Bailly, A. P. & Gartner, A. Methods for studying the DNA damage response in the Caenorhabdatis elegans germ line. Methods Cell Biol. 107, 321–352 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Joo, H. J., Park, S., Kim, K. Y., Kim, M. Y. & Paik, Y. K. HSF-1 is involved in regulation of ascaroside pheromone biosynthesis by heat stress in Caenorhabditis elegans. Biochem. J. 473, 789–796 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prahlad, V., Cornelius, T. & Morimoto, R. I. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 9, 811–814 (2008).

    Article 
    ADS 

    Google Scholar 

  • Vakkayil, K. L. & Hoppe, T. Temperature-dependent regulation of proteostasis and longevity. Front. Aging 3, 853588 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pagliuso, D. C., Bodas, D. M. & Pasquinelli, A. E. Recovery from heat shock requires the microRNA pathway in Caenorhabditis elegans. PLoS Genet. 17(8), e1009734 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, V. & Aballay, A. Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc. Natl. Acad. Sci. USA 103(35), 13092–13097 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurop, M. K., Huyen, C. M., Kelly, J. H. & Blagg, B. S. J. The heat shock response and small molecule regulators. Eur. J. Med. Chem. 226, 113846 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Howard, A. C., Rollins, J., Snow, S., Castor, S. & Rogers, A. N. Reducing translation through eIF4G/IFG-1 improves survival under ER stress that depends on heat shock factor HSF-1 in Caenorhabditis elegans. Aging Cell 15(6), 1027–1038 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jo, H., Shim, J., Lee, J. H., Lee, J. & Kim, J. B. IRE-1 and HSP-4 contribute to energy homeostasis via fasting-induced lipases in C. elegans. Cell Metab. 9(5), 440–448 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Amin, M., Kawasaki, I., Gong, J. & Shim, Y. H. Caffeine induces the stress response and up-regulates heat shock proteins in Caenorhabditis elegans. Mol. Cells. 39(2), 163–168 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dues, D. J. et al. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways. Aging (Albany NY). 8(4), 777–795 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prahlad, V. & Morimoto, R. I. Integrating the stress response: Lessons for neurodegenerative diseases from C. elegans. Trends. Cell. Biol. 19, 52–61 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Younis, A. E. et al. Stage-specific excretory-secretory small heat shock proteins from the parasitic nematode Strongyloides ratti–putative links to host’s intestinal mucosal defense system. FEBS. J. 278, 3319–3336 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Komarova, E. Y. et al. Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell Stress Chaper. 9, 265–275 (2004).

    Article 
    CAS 

    Google Scholar 

  • Edkins, A. L., Price, J. T., Pockley, A. G. & Blatch, G. L. Heat shock proteins as modulators and therapeutic targets of chronic disease: An integrated perspective. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 19, 1738 (2018).

    Google Scholar 

  • Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaccmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pierotti, M. A. & Dragani, T. A. Genetics and cancer. Curr. Opin. Oncol. 4, 127–133 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roemer, K. Mutant p53: Gain-of-function oncoproteins and wild-type p53 inactivators. Biol. Chem. 380, 879–887 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J. & Hengartner, M. O. A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol. Cell 5, 435–443 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lettre, G. & Hengartner, M. O. Developmental apoptosis in C. elegans: A complex CEDnario. Nat. Rev. Mol. Cell Biol. 7, 97–108 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Conradt, B. & Xue, D. Programmed Cell Death 1–13 (WormBook, 2005).

    Google Scholar 

  • Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sharpless, N. E. & DePinho, R. A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaletta, T. & Hengartner, M. O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5, 387–399 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Improving health outcomes by targeting climate and air pollution simultaneously

    Horses discriminate human body odors between fear and joy contexts in a habituation-discrimination protocol