Spribille, T. et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492 (2016).
Google Scholar
Hawksworth, D. L. & Grube, M. Lichens redefined as complex ecosystems. New Phytol. 227, 1281 (2020).
Google Scholar
Jung, P. et al. Lichens bite the dust-a bioweathering scenario in the atacama desert. iScience 23, 101647 (2020).
Google Scholar
Seneviratne, G. & Indrasena, I. Nitrogen fixation in lichens is important for improved rock weathering. J. Biosci. 31, 639–643 (2006).
Google Scholar
Nybakken, L., Solhaug, K. A., Bilger, W. & Gauslaa, Y. The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against uv-b radiation in arctic habitats. Oecologia 140, 211–216 (2004).
Google Scholar
Peksa, O. & Škaloud, P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga asterochloris (trebouxiophyceae). Mol. Ecol. 20, 3936–3948 (2011).
Google Scholar
Friedmann, E. I. & Galun, M. Desert algae, lichens and fungi. Desert Biol. 2, 165–212 (1974).
Google Scholar
Conti, M. E. & Cecchetti, G. Biological monitoring: Lichens as bioindicators of air pollution assessment—a review. Environ. Pollut. 114, 471–492 (2001).
Google Scholar
Van Herk, C., Mathijssen-Spiekman, E. & De Zwart, D. Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 35, 347–359 (2003).
Google Scholar
Osyczka, P., Lenart-Boroń, A., Boroń, P. & Rola, K. Lichen-forming fungi in postindustrial habitats involve alternative photobionts. Mycologia 113, 43–55 (2021).
Google Scholar
Margulis, L. & Fester, R. Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis (MIT press, 1991).
Solé, R. et al. Synthetic collective intelligence. Biosystems 148, 47–61 (2016).
Google Scholar
Dal Forno, M. et al. Extensive photobiont sharing in a rapidly radiating cyanolichen clade. Mol. Ecol. 30, 1755–1776 (2021).
Google Scholar
Nishiguchi, M. K. Cospeciation between hosts and symbionts. In Symbiosis 757–774 (Springer, 2001).
Hill, D. J. Asymmetric co-evolution in the lichen symbiosis caused by a limited capacity for adaptation in the photobiont. Bot. Rev. 75, 326–338 (2009).
Google Scholar
Muggia, L., Pérez-Ortega, S., Fryday, A., Spribille, T. & Grube, M. Global assessment of genetic variation and phenotypic plasticity in the lichen-forming species Tephromela atra. Fungal Divers. 64, 233–251 (2014).
Google Scholar
Vančurová, L., Muggia, L., Peksa, O., Řídká, T. & Škaloud, P. The complexity of symbiotic interactions influences the ecological amplitude of the host: A case study in stereocaulon (lichenized ascomycota). Mol. Ecol. 27, 3016–3033 (2018).
Google Scholar
Peksa, O., Gebouská, T., Škvorová, Z., Vančurová, L. & Škaloud, P. The guilds in green algal lichens-an insight into the life of terrestrial symbiotic communities. FEMS Microbiol. Ecol. 98, fiac008 (2022).
Google Scholar
Wagner, M. et al. Macroclimatic conditions as main drivers for symbiotic association patterns in lecideoid lichens along the transantarctic mountains, ross sea region, antarctica. Sci. Rep. 11, 1–15 (2021).
Google Scholar
Nascimbene, J. & Marini, L. Epiphytic lichen diversity along elevational gradients: Biological traits reveal a complex response to water and energy. J. Biogeogr. 42, 1222–1232 (2015).
Google Scholar
Galloway, D. Lichen biogeography. Lichen Biol. 2, 315–35 (1996).
Vančurová, L., Malíček, J., Steinová, J. & Škaloud, P. Choosing the right life partner: Ecological drivers of lichen symbiosis. Front. Microbiol. 12, 769304 (2021).
Google Scholar
Škvorová, Z. et al. Promiscuity in lichens follows clear rules: Partner switching in cladonia is regulated by climatic factors and soil chemistry. Front. Microbiol. 12, 56 (2021).
Medeiros, I. D. et al. Turnover of lecanoroid mycobionts and their trebouxia photobionts along an elevation gradient in bolivia highlights the role of environment in structuring the lichen symbiosis. Front. Microbiol. 2021, 3859 (2021).
Marini, L., Nascimbene, J. & Nimis, P. L. Large-scale patterns of epiphytic lichen species richness: Photobiont-dependent response to climate and forest structure. Sci. Total Environ. 409, 4381–4386 (2011).
Google Scholar
Saini, K. C., Nayaka, S. & Bast, F. Diversity of lichen photobionts: Their coevolution and bioprospecting potential. Microb. Divers. Ecosyst. Sustain. Biotechnol. Appl. 2019, 307–323 (2019).
Ivens, A. B., von Beeren, C., Blüthgen, N. & Kronauer, D. J. Studying the complex communities of ants and their symbionts using ecological network analysis. Annu. Rev. Entomol. 61, 353–371 (2016).
Google Scholar
Ziegler, M., Eguíluz, V. M., Duarte, C. M. & Voolstra, C. R. Rare symbionts may contribute to the resilience of coral-algal assemblages. ISME J. 12, 161–172 (2018).
Google Scholar
Rikkinen, J. et al. Ecological and evolutionary role of photobiont-mediated guilds in lichens. Symbiosis 2003, 256 (2003).
Belinchón, R., Yahr, R. & Ellis, C. J. Interactions among species with contrasting dispersal modes explain distributions for epiphytic lichens. Ecography 38, 762–768 (2015).
Google Scholar
Muggia, L. et al. The symbiotic playground of lichen thalli-a highly flexible photobiont association in rock-inhabiting lichens. FEMS Microbiol. Ecol. 85, 313–323 (2013).
Google Scholar
Rikkinen, J., Oksanen, I. & Lohtander, K. Lichen guilds share related cyanobacterial symbionts. Science 297, 357 (2002).
Google Scholar
Kaasalainen, U., Tuovinen, V., Mwachala, G., Pellikka, P. & Rikkinen, J. Complex interaction networks among cyanolichens of a tropical biodiversity hotspot. Front. Microbiol. 12, 1246 (2021).
Google Scholar
Werth, S. Fungal-algal interactions in Ramalina menziesii and its associated epiphytic lichen community. Lichenologist 44, 543–560 (2012).
Google Scholar
O’Brien, H. E., Miadlikowska, J. & Lutzoni, F. Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol. 198, 557–566 (2013).
Google Scholar
Pino-Bodas, R. & Stenroos, S. Global biodiversity patterns of the photobionts associated with the genus cladonia (lecanorales, ascomycota). Microb. Ecol. 82, 173–187 (2021).
Google Scholar
Miadlikowska, J. et al. New insights into classification and evolution of the lecanoromycetes (pezizomycotina, ascomycota) from phylogenetic analyses of three ribosomal rna-and two protein-coding genes. Mycologia 98, 1088–1103 (2006).
Google Scholar
Chagnon, P.-L., Magain, N., Miadlikowska, J. & Lutzoni, F. Species diversification and phylogenetically constrained symbiont switching generated high modularity in the lichen genus peltigera. J. Ecol. 107, 1645–1661 (2019).
Google Scholar
Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).
Google Scholar
Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).
Google Scholar
Weitz, J. S. et al. Phage-bacteria infection networks. Trends Microbiol. 21, 82–91 (2013).
Google Scholar
Maliet, O., Loeuille, N. & Morlon, H. An individual-based model for the eco-evolutionary emergence of bipartite interaction networks. Ecol. Lett. 23, 1623–1634 (2020).
Google Scholar
Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: Two sides of the same coin?. J. Anim. Ecol. 2010, 811–817 (2010).
Mariani, M. S., Ren, Z.-M., Bascompte, J. & Tessone, C. J. Nestedness in complex networks: Observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).
Google Scholar
Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R. Jr., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: Reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
Google Scholar
Flores, C. O., Valverde, S. & Weitz, J. S. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 7, 520–532 (2013).
Google Scholar
Sanders, W. B. & Masumoto, H. Lichen algae: The photosynthetic partners in lichen symbioses. Lichenologist 53, 347–393 (2021).
Google Scholar
Duran-Nebreda, S. & Bassel, G. W. Bridging scales in plant biology using network science. Trends Plant Sci. 22, 1001–1003 (2017).
Google Scholar
Galiana, N. et al. Ecological network complexity scales with area. Nature Ecol. Evol. 2022, 1–8 (2022).
Solé, R. V. & Valverde, S. Spontaneous emergence of modularity in cellular networks. J. R. Soc. Interface 5, 129–133 (2008).
Google Scholar
Jackson, M. D., Duran-Nebreda, S. & Bassel, G. W. Network-based approaches to quantify multicellular development. J. R. Soc. Interface 14, 20170484 (2017).
Google Scholar
Jackson, M. D., Xu, H., Duran-Nebreda, S., Stamm, P. & Bassel, G. W. Topological analysis of multicellular complexity in the plant hypocotyl. Elife 6, e26023 (2017).
Google Scholar
Jackson, M. D. et al. Global topological order emerges through local mechanical control of cell divisions in the arabidopsis shoot apical meristem. Cell Syst. 8, 53–65 (2019).
Google Scholar
Miadlikowska, J. et al. A multigene phylogenetic synthesis for the class lecanoromycetes (ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol. Phylogenet. Evol. 79, 132–168 (2014).
Google Scholar
Perez-Lamarque, B., Selosse, M.-A., Öpik, M., Morlon, H. & Martos, F. Cheating in arbuscular mycorrhizal mutualism: A network and phylogenetic analysis of mycoheterotrophy. New Phytol. 226, 1822–1835 (2020).
Google Scholar
Jaccard, P. Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. Soc. Vaudoise Sci. Naturelles 37, 547–579 (1901).
Müllner, D. fastcluster: Fast hierarchical, agglomerative clustering routines for r and python. J. Stat. Softw. 53, 1–18 (2013).
Google Scholar
Sole, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 2039–2045 (2001).
Google Scholar
Guimaraes, P. R. Jr. The structure of ecological networks across levels of organization. Annu. Rev. Ecol. Evol. Syst. 51, 433–460 (2020).
Google Scholar
Nash, T. H. Lichen Biology (Cambridge University Press, 1996).
Hawksworth, D. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 96, 3–20 (1988).
Google Scholar
Richardson, D. H. War in the world of lichens: Parasitism and symbiosis as exemplified by lichens and lichenicolous fungi. Mycol. Res. 103, 641–650 (1999).
Google Scholar
Lücking, R. et al. Do lichens domesticate photobionts like farmers domesticate crops? Evidence from a previously unrecognized lineage of filamentous cyanobacteria. Am. J. Bot. 96, 1409–1418 (2009).
Google Scholar
Kaasalainen, U., Schmidt, A. R. & Rikkinen, J. Diversity and ecological adaptations in palaeogene lichens. Nature Plants 3, 1–8 (2017).
Google Scholar
Piercey-Normore, M. D. The lichen-forming ascomycete evernia mesomorpha associates with multiple genotypes of Trebouxia jamesii. New Phytol. 169, 331–344 (2006).
Google Scholar
Rudgers, J. A. & Strauss, S. Y. A selection mosaic in the facultative mutualism between ants and wild cotton. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 2481–2488 (2004).
Google Scholar
Spribille, T., Resl, P., Stanton, D. E. & Tagirdzhanova, G. Evolutionary biology of lichen symbioses. New Phytol. 2022, 25 (2022).
Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).
Google Scholar
Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).
Google Scholar
Guimaraes, P. R. Jr. et al. Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr. Biol. 17, 1797–1803 (2007).
Google Scholar
Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nature Ecol. Evol. 2, 94–99 (2018).
Google Scholar
Staniczenko, P. P., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1–6 (2013).
Google Scholar
Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant-animal mutualistic networks: A review. Ann. Bot. 103, 1445–1457 (2009).
Google Scholar
Mello, M. A. et al. Insights into the assembly rules of a continent-wide multilayer network. Nature Ecol. Evol. 3, 1525–1532 (2019).
Google Scholar
Felix, G. M., Pinheiro, R. B., Jorge, L. R. & Lewinsohn, T. M. A framework for hierarchical compound topologies in species interaction networks. Oikos 2022, 9538 (2022).
Google Scholar
Valverde, S. et al. Coexistence of nestedness and modularity in host-pathogen infection networks. Nature Ecol. Evol. 4, 568–577 (2020).
Google Scholar
Hui, C. & Richardson, D. M. How to invade an ecological network. Trends Ecol. Evol. 34, 121–131 (2019).
Google Scholar
Layman, C. A., Quattrochi, J. P., Peyer, C. M. & Allgeier, J. E. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol. Lett. 10, 937–944 (2007).
Google Scholar
Vidiella, B., Fontich, E., Valverde, S. & Sardanyés, J. Habitat loss causes long extinction transients in small trophic chains. Thyroid Res. 14, 641–661 (2021).
Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).
Google Scholar
Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).
Google Scholar
Hagberg, A., Swart, P. & S Chult, D. Exploring network structure, dynamics, and function using networkx. In Tech. Rep., Los Alamos National Lab.(LANL), Los Alamos (2008).
Chimani, M. et al. The open graph drawing framework (ogdf). Handb. Graph Draw. Visual. 2011, 543–569 (2013).
Hachul, S. & Jünger, M. Drawing large graphs with a potential-field-based multilevel algorithm. In Graph Drawing: 12th International Symposium, GD 2004, New York, NY, USA, September 29-October 2, 2004, Revised Selected Papers 12, 285–295 (Springer, 2005).
Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007).
Google Scholar
Newman, M. E. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
Google Scholar
Barber, M. J. Modularity and community detection in bipartite networks. Phys. Rev. E 76, 066102 (2007).
Google Scholar
Pesántez-Cabrera, P. & Kalyanaraman, A. Efficient detection of communities in biological bipartite networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 16, 258–271 (2017).
Google Scholar
Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).
Google Scholar
Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001).
Google Scholar
Borgatti, S. P. & Halgin, D. S. Analyzing affiliation networks. Sage Handb. Soc. Netw. Anal. 1, 417–433 (2011).
Roopnarine, P. D. Extinction cascades and catastrophe in ancient food webs. Paleobiology 32, 1–19 (2006).
Google Scholar
Pires, M. M. et al. The indirect paths to cascading effects of extinctions in mutualistic networks. Ecology 101(7), e03080 https://doi.org/10.1002/ecy.3080 (2020).
Google Scholar
Mestres, J., Gregori-Puigjane, E., Valverde, S. & Sole, R. V. Data completeness-the achilles heel of drug-target networks. Nat. Biotechnol. 26, 983–984 (2008).
Google Scholar
Milo, R. et al. Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002).
Google Scholar
Sarzynska, M., Leicht, E. A., Chowell, G. & Porter, M. A. Null models for community detection in spatially embedded, temporal networks. J. Complex Netw. 4, 363–406 (2016).
Google Scholar
Source: Ecology - nature.com