Dai, H., Dong, Z. & Jiang, L. Directional liquid dynamics of interfaces with superwettability. Sci. Adv. 6, eabb5528 (2020).
Google Scholar
Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).
Google Scholar
Kwon, G. et al. Visible light guided manipulation of liquid wettability on photoresponsive surfaces. Nat. Commun. 8, 14968 (2017).
Google Scholar
Liu, M., Wang, S. & Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017).
Google Scholar
Chu, K. H., Xiao, R. & Wang, E. N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 9, 413–417 (2010).
Google Scholar
Kota, A. K., Kwon, G., Choi, W., Mabry, J. M. & Tuteja, A. Hygro-responsive membranes for effective oil–water separation. Nat. Commun. 3, 1025 (2012).
Google Scholar
Zhang, G. et al. Processing supramolecular framework for free interconvertible liquid separation. Nat. Commun. 11, 425 (2020).
Google Scholar
Wang, B., Liang, W., Guo, Z. & Liu, W. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem. Soc. Rev. 44, 336–361 (2015).
Google Scholar
Jiang, Y. et al. Crystal structural and mechanism of a calcium-gated potassium channel. Nature 417, 523–526 (2002).
Google Scholar
Liu, Z., Wang, W., Xie, R., Ju, X. J. & Chu, L. Y. Stimuli-responsive smart gating membranes. Chem. Soc. Rev. 45, 460–475 (2016).
Google Scholar
Hou, X. Smart gating multi-scale pore/channel-based membranes. Adv. Mater. 28, 7049–7064 (2016).
Google Scholar
Qu, R. et al. Aminoazobenzene@Ag modified meshes with large extent photo-response: towards reversible oil/water removal from oil/water mixtures. Chem. Sci. 10, 4089–4096 (2019).
Google Scholar
Qu, R. et al. Photothermally induced in situ double emulsion separation by a carbon nanotube/poly(Nisopropylacrylamide) modified membrane with superwetting properties. J. Mater. Chem. A 8, 7677–7686 (2020).
Google Scholar
Hu, L. et al. Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano 9, 4835–4842 (2015).
Google Scholar
Cheng, B. et al. Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation. J. Membr. Sci. 534, 1–8 (2017).
Google Scholar
Zhang, L., Zhang, Z. & Wang, P. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation. NPG Asia Mater. 4, e8 (2012).
Google Scholar
Li, J. J., Zhou, Y. N. & Luo, Z. H. Smart fiber membrane for pH-induced oil/water separation. ACS Appl. Mater. Inter. 7, 19643–19650 (2015).
Google Scholar
Kwon, G. et al. On-demand separation of oil-water mixtures. Adv. Mater. 24, 3666 (2012).
Google Scholar
Liu, Y., Zhao, L., Lin, J. & Yang, S. Electrodeposited surfaces with reversibly switching interfacial properties. Sci. Adv. 5, eaax0380 (2019).
Google Scholar
Zhang, W. et al. Thermo-driven controllable emulsion separation by a polymer-decorated membrane with switchable wettability. Angew. Chem. Int. Ed. 57, 5740 (2018).
Google Scholar
Ou, R., Wei, J., Jiang, L., Simon, G. P. & Wang, H. Robust thermos-responsive polymer composite membrane with switchable superhydrophilicity and superhydrophobicity for efficient oil-water separation. Environ. Sci. Technol. 50, 906–914 (2016).
Google Scholar
Rana, D. & Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010).
Google Scholar
Dutta, K. & De, S. Smart responsive materials for water purification: an overview. J. Mater. Chem. A 5, 22095–22112 (2017).
Google Scholar
Dong, L. & Zhao, Y. CO2-switchable membranes: structures, functions, and separation applications in aqueous medium. J. Mater. Chem. A 8, 16738–16746 (2020).
Google Scholar
Cunningham, M. F. & Jessop, P. G. Carbon dioxide-switchable polymers: where are the future opportunities? Macromolecules 52, 6801–6816 (2019).
Google Scholar
Zhang, Q., Lei, L. & Zhu, S. Gas-responsive polymers. ACS Macro Lett. 6, 515–522 (2017).
Google Scholar
Liu, H., Lin, S., Feng, Y. & Theato, P. CO2-responsive polymer materials. Polym. Chem. 8, 12–23 (2017).
Google Scholar
Lin, S. J., Shang, J. J. & Theato, P. Facile fabrication of CO2‑responsive nanofibers from photo-cross-linked poly(pentafluorophenyl acrylate) nanofibers. ACS Macro Lett. 7, 431–436 (2018).
Google Scholar
Lin, S. J. & Theato, P. CO2-responsive polymers. Macromol. Rapid Commun. 34, 1118–1133 (2013).
Google Scholar
Yan, Q. & Zhao, Y. Block copolymer self-assembly controlled by the “green” gas stimulus of carbon dioxide. Chem. Commun. 50, 11631–11641 (2014).
Google Scholar
Yan, Q. & Zhao, Y. CO2‑stimulated diversiform deformations of polymer assemblies. J. Am. Chem. Soc. 135, 16300–16303 (2013).
Google Scholar
Darabi, A., Jessop, P. G. & Cunningham, M. F. CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem. Soc. Rev. 45, 4391–4436 (2016).
Google Scholar
Che, H. et al. CO2-responsive nanofibrous membranes with switchable oil/water wettability. Angew. Chem. Int. Ed. 54, 8934–8938 (2015).
Google Scholar
Lei, L., Zhang, Q., Shi, S. & Zhu, S. Highly porous poly(high internal phase emulsion) membranes with “open-cell” structure and CO2‑switchable wettability used for controlled oil/water separation. Langmuir 33, 11936–11944 (2017).
Google Scholar
Mo, J., Sha, J., Li, D., Li, Z. & Chen, Y. Fluid release pressure for nanochannels: the Young-Laplace equation using the effective contact angle. Nanoscale 11, 8408–8415 (2019).
Google Scholar
Seveno, D., Blake, T. D. & Coninck, J. Young’s equation at the nanoscale. Phys. Rev. Lett. 111, 096101 (2013).
Google Scholar
Yang, Z., He, C., Suia, H., He, L. & Li, X. Recent advances of CO2-responsive materials in separations. J. CO2 Util. 30, 79–99 (2019).
Google Scholar
Tauhardt, L. et al. Zwitterionic poly(2-oxazoline)s as promising candidates for blood contacting applications. Polym. Chem. 5, 5751 (2014).
Google Scholar
Zhang, X. et al. Janus poly(vinylidene fluoride)-graft-(TiO2 nanoparticles and PFDS) membranes with loose architecture and asymmetric wettability for efficient switchable separation of surfactant-stabilized oil/water emulsions. J. Membr. Sci. 640, 119837 (2021).
Google Scholar
Feng, X. & Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063–3078 (2006).
Google Scholar
Tao, M., Xue, L., Liu, F. & Jiang, L. An intelligent superwetting PVDF membrane showing switchable transport performance for oil/water separation. Adv. Mater. 26, 2943–2948 (2014).
Google Scholar
Li, X. et al. Universal and tunable liquid-liquid separation by nanoparticle-embedded gating membranes based on a self-defined interfacial parameter. Nat. Commun. 12, 80 (2021).
Google Scholar
Peng, B. et al. Cellulose-based materials in wastewater treatment of petroleum industry. Green. Energy Environ. 5, 37–49 (2020).
Google Scholar
Huang, K. et al. Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil-water separation. Nat. Commun. 11, 1097 (2020).
Google Scholar
Haase, M. F. et al. Multifunctional nanocomposite hollow fiber membranes by solvent transfer induced phase separation. Nat. Commun. 8, 1234 (2017).
Google Scholar
J. Zhang, L. Liu, Y. Si, J. Yu, B. Ding. Electrospun nanofibrous membranes: an effective arsenal for the purification of emulsified oily wastewater. Adv. Funct. Mater. 30, 2002192 (2020).
Kim, S., Kim, K., Jun, G. & Hwang, W. Wood-nanotechnology-based membrane for the efficient purification of oil-in-water emulsions. ACS Nano 14, 17233–17240 (2020).
Google Scholar
Kralchevsky, P. A. & Nagayama, K. Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Colloid Interfacace Sci. 85, 145–192 (2000).
Google Scholar
Dehkordi, T. F., Shirin-Abadi, A. R., Karimipour, K. & Mahdavian, A. R. CO2-, electric potential-, and photo-switchable-hydrophilicity membrane (x-SHM) as an efficient color-changeable tool for oil/water separation. Polymer 212, 123250 (2021).
Google Scholar
Huang, X., Mutlu, H. & Theato, P. A CO2-gated anodic aluminum oxide based nanocomposite membrane for de-emulsification. Nanoscale 12, 21316–21324 (2020).
Google Scholar
Shirin-Abadi, A. R., Gorji, M., Rezaee, S., Jessop, P. G. & Cunningham, M. F. CO2-Switchable-hydrophilicity membrane (CO2-SHM) triggered by electric potential: faster switching time along with efficient oil/water separation. Chem. Commun. 54, 8478–8481 (2018).
Google Scholar
Abraham, S., Kumaranab, S. K. & Montemagno, C. D. Gas-switchable carbon nanotube/polymer hybrid membrane for separation of oil-in-water emulsions. RSC Adv. 7, 39465–39470 (2017).
Google Scholar
Liu, Y. et al. Separate reclamation of oil and surfactant from oil-in-water emulsion with a CO2-responsive material. Environ. Sci. Technol. 56, 9651–9660 (2022).
Google Scholar
Zhang, Q. et al. CO2‑Switchable membranes prepared by immobilization of CO2‑breathing microgels. ACS Appl. Mater. Inter. 9, 44146–44151 (2017).
Google Scholar
Kung, C. H., Zahiri, B., Sow, P. K. & Mérida, W. On-demand oil-water separation via low-voltage wettability switching of core-shell structures on copper substrates. Appl. Surf. Sci. 444, 15–27 (2018).
Google Scholar
Du, L., Quan, X., Fan, X., Chen, S. & Yu, H. Electro-responsive carbon membranes with reversible superhydrophobicity/superhydrophilicity switch for efficient oil/water separation. Sep. Purif. Technol. 210, 891–899 (2019).
Google Scholar
Wu, J. et al. A 3D smart wood membrane with high flux and efficiency for separation of stabilized oil/water emulsions. J. Hazard. Mater. 441, 129900 (2023).
Google Scholar
Yang, C. et al. Facile fabrication of durable mesh with reversible photo-responsive wettability for smart oil/water separation. Prog. Org. Coat. 160, 106520 (2021).
Google Scholar
Chen, Z. et al. Smart light responsive polypropylene membrane switching reversibly between hydrophobicity and hydrophilicity for oily water separation. J. Membr. Sci. 638, 119704 (2021).
Google Scholar
Li, J. J., Zhu, L. T. & Luo, Z. H. Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation. Chem. Eng. J. 287, 474–481 (2016).
Google Scholar
Wang, Y. et al. Temperature-responsive nanofibers for controllable oil/water separation. RSC Adv. 5, 51078–51085 (2015).
Google Scholar
Ding, Y. et al. One-step fabrication of a micro/nanosphere-coordinated dual stimulus-responsive nanofibrous membrane for intelligent antifouling and ultrahigh permeability of viscous water-in-oil emulsions. ACS Appl. Mater. Inter. 13, 27635–27644 (2021).
Google Scholar
Xiang, Y., Shen, J., Wang, Y., Liu, F. & Xue, L. A pH-responsive PVDF membrane with superwetting properties for the separation of oil and water. RSC Adv. 5, 23530–23539 (2015).
Google Scholar
Dou, Y. L. et al. Dual-responsive polyacrylonitrile-based electrospun membrane for controllable oil-water separation. J. Hazard. Mater. 438, 129565 (2022).
Google Scholar
Li, J. J., Zhou, Y. N. & Luo, Z. H. Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation. Chem. Eng. J. 322, 693–701 (2017).
Google Scholar
Zhou, Y. N., Li, J. J. & Lu, Z. H. Toward efficient water/oil separation material: effect of copolymer composition on pH-responsive wettability and separation performance. AIChE J. 62, 1758–1770 (2016).
Google Scholar
Xu, Z. et al. Fluorine-free superhydrophobic coatings with pH-induced wettability transition for controllable oil−water separation. ACS Appl. Mater. Inter. 8, 5661–5667 (2016).
Google Scholar
Dang, Z., Liu, L., Li, Y., Xiang, Y. & Guo, G. In situ and ex situ pH-responsive coatings with switchable wettability for controllable oil/water separation. ACS Appl. Mater. Inter. 8, 31281–31288 (2016).
Google Scholar
Cai, Y. et al. A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation. J. Membr. Sci. 555, 69–77 (2018).
Google Scholar
Zhang, Z. et al. A reusable, biomass-derived, and pH-responsive collagen fiber based oil absorbent material for effective separation of oil-in-water emulsions. Colloid Surf. A 633, 127906 (2022).
Google Scholar
Zhang, X., Liu, C., Yang, J., Huang, X. J. & Xu, Z. K. Wettability switchable membranes for separating both oil-in-water and water-in-oil emulsions. J. Membr. Sci. 624, 118976 (2021).
Google Scholar
Yang, W., Li, J., Zhou, P., Zhu, L. & Tang, H. Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling. Chem. Eng. J. 327, 849–854 (2017).
Google Scholar
Zhai, H. et al. Crown ether modified membranes for Na+-responsive controllable emulsion separation suitable for hypersaline environments. J. Mater. Chem. A 8, 2684–2690 (2020).
Google Scholar
Source: Resources - nature.com