in

Alcobiosis, an algal-fungal association on the threshold of lichenisation

  • Wilkinson, D. At cross purposes. Nature 412, 485 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • de Bary, H. A. Über Symbiose [On Symbiosis]. Tageblatt für die Versammlung Dtsch. Naturforscher und Aerzte (in Cassel) [Daily J. Conf. Ger. Sci. Phys.] (in Ger. 51, 121–126 (1878).

  • Lücking, R., Leavitt, S. D. & Hawksworth, D. L. Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics. Fungal Div.109, 99–154 (Springer, Netherlands, 2021).

  • de Vries, J. & Archibald, J. M. Plant evolution: Landmarks on the path to terrestrial life. New Phytol. 217, 1428–1434 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Ahmadjian, V. The Lichen Symbiosis (John Wiley & Sons, 1993).

    Google Scholar 

  • Lücking, R., Hodkinson, B. P. & Leavitt, S. D. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota-approaching one thousand genera. Bryologist 119, 361–416 (2016).

    Article 

    Google Scholar 

  • Schneider, K., Resl, P. & Spribille, T. Escape from the cryptic species trap: lichen evolution on both sides of a cyanobacterial acquisition event. Mol. Ecol. 25, 3453–3468 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wedin, M., Döring, H. & Gilenstam, G. Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol. 164, 459–465 (2004).

    Article 

    Google Scholar 

  • Muggia, L., Baloch, E., Stabentheiner, E., Grube, M. & Wedin, M. Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens. FEMS Microbiol. Ecol. 75, 255–272 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sanders, W. B., Moe, R. L. & Ascaso, C. Ultrastructural study of the brown alga Petroderma maculiforme (Phaeophyceae) in the free-living state and in lichen symbiosis with the intertidal marine fungus Verrucaria tavaresiae (Ascomycotina). Eur. J. Phycol. 40, 353–361 (2005).

    Article 
    CAS 

    Google Scholar 

  • Vondrák, J. et al. From Cinderella to Princess. Preslia 94, 143–181 (2022).

    Article 

    Google Scholar 

  • Hawksworth, D. L. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 96, 3–20 (1988).

    Article 

    Google Scholar 

  • Larsson, K. H. & Ryvarden, L. Corticioid fungi of Europe 1. Acanthobasidium–Gyrodontium. Synop. Fungorum 43, 1–266 (2021).

    Google Scholar 

  • Albertini, J. B., von Schweinitz, L. D. Conspectus fungorum in Lusatiae Superioris agro Niskiensi crescentium, e methodo Persooniana. (DE: Sumtibus Kummerianis, Lipsiae 1805) https://doi.org/10.5962/bhl.title.3601.

  • Poelt, J. & Jülich, W. Über die Beziehungen zweier corticioider Basidiomyceten zu Algen. Österr. Bot. Zeitschrift 116, 400–410 (1969).

    Article 

    Google Scholar 

  • Voytsekhovich, A., Ordynets, O. & Akimov, Y. Optionally lichenized fungi of Hyphodontia (Agaricomycetes, Schizoporaceae) and their photobiont composition. Aктyaльнi Пpoблeми Бoтaнiки Ta Eкoлoгiї. Maтepiaли Miжнapoднoї Кoнфepeнцiї Moлoдиx Учeниx 65 (2013).

  • Voytsekhovich, A., Mikhailyuk, T., Akimov, Y., Ordynets, A., Gustavs, L. Optionally lichenized fungi of Hyphodontia (Agaricomycetes, Schizoporaceae). 8th Congress of the International Symbiosis Society, Lisbon, 12–18 July 2015. Lisbon, PT:, 217 (Conf. abstract) (2015).

  • Gustavs L, Schiefelbein U, Darienko T, P. T. Symbioses of the green algal genera Coccomyxa and Elliptochloris (Trebouxiophyceae, Chlorophyta). in Algal and Cyanobacteria Symbioses (ed. Grube M, Seckbach J) 169–208 (2017).

  • Darienko, T., Gustavs, L., Eggert, A., Wolf, W. & Pröschold, T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE 10, 1–31 (2015).

    Article 

    Google Scholar 

  • Malavasi, V. et al. DNA-based taxonomy in ecologically versatile microalgae: A re-evaluation of the species concept within the coccoid green algal genus Coccomyxa (Trebouxiophyceae, Chlorophyta). PLoS ONE 11, e0151137 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Green, T. G. A., Nash, T. H. Lichen Biology. In Lichen Biology, Second Edition 152–181 (Cambridge University Press, Cambridge, 2008) https://doi.org/10.1017/CBO9780511790478.

  • Lindgren, H. et al. Cophylogenetic patterns in algal symbionts correlate with repeated symbiont switches during diversification and geographic expansion of lichen-forming fungi in the genus Sticta (Ascomycota, Peltigeraceae). Mol. Phylogenet. Evol. 150, 106860 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kulichová, J., Škaloud, P. & Neustupa, J. Molecular diversity of green corticolous microalgae from two sub-mediterranean European localities. Eur. J. Phycol. 49, 345–355 (2014).

    Article 

    Google Scholar 

  • Pröschold, T. & Darienko, T. The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus. Phytotaxa 441, 113–142 (2020).

    Article 

    Google Scholar 

  • Meier, F. A., Scherrer, S. & Honegger, R. Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont. Trebouxia arboricola. Biol. J. Linn. Soc. 76, 259–268 (2002).

    Article 

    Google Scholar 

  • Bernicchia, A. & Gorjón, S. P. Corticiaceae s.l. 1008 (2010), ISBN: 9788890105791.

  • Parmasto, E. Descriptiones taxorum novorum. Combinationes novae. Proc. Acad. Sci. Est. SSR. Biol. 16, 377–394 (1967).

    Google Scholar 

  • Hjortstam, K., Larsson, K., Ryvarden, L. & Eriksson, J. The Corticiaceae of North Europe. (Oslo: Fungiflora, 1988).

  • Jaag, O. Coccomyxa schmidle Monographie einer algengattung. Beitr. Kryptogamenflora Schweiz 8, 1–132 (1933).

    Google Scholar 

  • Oberwinkler, F. Die gattungen der Basidiolichenen. Vorträge aus dem Gesamtgebiet der Botanik. Herausgegeb. v. d. Deutsch. bot. Ges. Neue Folge 4, 139–169 (1970).

    Google Scholar 

  • Poelt, J. Basidienflechten, eine in den Alpen lange übersehene Pflanzengruppe. Jahrb. Vereins Schutze Alpenpfl. Tiere 40, 81–92 (1975).

    Google Scholar 

  • Eriksson, J., Hjortstam, K. The Corticiaceae of North Europe. Vol. 6. (Grønlands Eskefabrikk, 1981).

  • Oberwinkler, F. Basidiolichens. In Fungal Association 211–225 (Springer, Berlin Heidelberg, Berlin, 2001). https://doi.org/10.1007/978-3-662-07334-6_12.

    Chapter 

    Google Scholar 

  • Jülich, W. A new lichenized Athelia from Florida. Persoonia 10, 149–151 (1978).

    Google Scholar 

  • Zavada, M. S. & Simoes, P. The possible demi-lichenization of the basidiocarps of Trametes Versicolor (L.:Fries) pilat (polyporaceae). Northeast. Nat. 8, 101–112 (2001).

    Google Scholar 

  • Neustroeva, N., Mukhin, V., Novakovskaya, I. & Patova, E. Biodiversity of symbiotic algae of wood decay Basidimycetes in the Central Urals. III Russ. Natl. Conf. “Information Technol. Biodivers. Res. 1, 83–92 (2020).

    Google Scholar 

  • Zavada, M. S., DiMichele, L. & Toth, C. R. The possible demi-lichenization of Trametes versicolor (L.: Fries) Pilát (Polyporaceae): The transfer of fixed 14CO2 from epiphytic algae to T. versicolor. Northeast. Nat. 11, 33–40 (2004).

    Article 

    Google Scholar 

  • Mukhin, V. A., Patova, E. N., Kiseleva, I. S., Neustroeva, N. V. & Novakovskaya, I. V. Mycetobiont symbiotic algae of wood-decomposing fungi. Russ. J. Ecol. 47, 133–137 (2016).

    Article 
    CAS 

    Google Scholar 

  • Sanders, W. B. & Masumoto, H. Lichen algae: The photosynthetic partners in lichen symbioses. Lichenologist 53, 347–393 (2021).

    Article 

    Google Scholar 

  • Krause, G. & Weis, E. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Biol. 42(1), 313–349 (1991).

    Article 
    CAS 

    Google Scholar 

  • Lüttge, U. & Büdel, B. Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol. 12, 437–444 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Lange, O. L. Moisture content and CO2 exchange of lichens: I. Influence of temperature on moisture-dependent net photosynthesis and dark respiration in Ramalina maciformis. Oecologia 45, 82–87 (1980).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Palmqvist, K. & Sundberg, B. Light use efficiency of dry matter gain in five macrolichens: Relative impact of microclimate conditions and species-specific traits. Plant Cell Environ. 23, 1–14 (2000).

    Article 

    Google Scholar 

  • Vondrak, J. & Kubásek, J. Algal stacks and fungal stacks as adaptations to high light in lichens. Lichenol. 45(1), 115 (2013).

    Article 

    Google Scholar 

  • Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: Incorporating acclimation to temperature and CO2. Glob. Chang. Biol. 19, 45–63 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Medeiros, P. M. & Simoneit, B. R. T. Analysis of sugars in environmental samples by gas chromatography-mass spectrometry. J. Chromatogr. A 1141, 271–278 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Honegger, R. Functional aspects of the lichen symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 553–578 (1991).

    Article 
    CAS 

    Google Scholar 

  • Honegger, R. The lichen symbiosis—What is so spectacular about it?. Lichenologist 30, 193–212 (1998).

    Article 

    Google Scholar 

  • Kirk, P. M. et al. (eds) Dictionary of the Fungi 10th edn. (CABI, Netherlands, 2008).

    Google Scholar 

  • Ahmadjian, V. The lichen alga Trebouxia: Does it occur free-living?. Plant Syst. Evol. 158, 243–247 (1988).

    Article 

    Google Scholar 

  • Sanders, W. B. Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: Propagule dispersal, establishment of symbiosis, thallus development, and formation of sexual and asexual reproductive structures. Am. J. Bot. 101, 1836–1848 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Rindi, F. & Guiry, M. Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43, 225–235 (2004).

    Article 

    Google Scholar 

  • Stonyeva, M. P., Uzunov, B. A. & Gärtner, G. Aerophytic green algae, epimycotic on Fomes fomentarius (L. ex Fr.) Kickx. Annu. Sofia Univ “St. Kliment Ohridski”. Fac. Biol. 99, 19–25 (2015).

    Google Scholar 

  • Aras, S. & Cansaran, D. Isolation of DNA for sequence analysis from herbarium material of some lichen specimens. Turk. J. Bot. 30, 449–453 (2006).

    Google Scholar 

  • Hall, T. BioEdit: A userfriendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS 

    Google Scholar 

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vondrák, J. & Kubásek, J. Algal stacks and fungal stacks as adaptations to high light in lichens. Lichenol. 45, 115–124 (2013).

    Article 

    Google Scholar 

  • Kubásek, J., Hájek, T. & Glime, J. M. Bryophyte photosynthesis in sunflecks: Greater relative induction rate than in tracheophytes. J. Bryol. 36, 110–117 (2014).

    Article 

    Google Scholar 

  • Kubásek, J. et al. Moss stomata do not respond to light and CO2 concentration but facilitate carbon uptake by sporophytes: A gas exchange, stomatal aperture, and C-13-labelling study. New Phytol. 230, 1815–1828 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Feige, G. & Kremer, B. Unusual carbohydrate pattern in Trentepohlia species. Phytochemistry 19, 1844–1845 (1980).

    Article 
    CAS 

    Google Scholar 

  • Tonon, T., Li, Y. & McQueen-Mason, S. Mannitol biosynthesis in algae: More widespread and diverse than previously thought. New Phytol. 213, 1573–1579 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Gustavs, L., Görs, M. & Karsten, U. Polyol patterns in biofilm-forming aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta). J. Phycol. 47, 533–537 (2011).

    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: Tod Machover on “Overstory Overture,” his new operatic work

    Untitled public forestlands threat Amazon conservation