Wilkinson, D. At cross purposes. Nature 412, 485 (2001).
Google Scholar
de Bary, H. A. Über Symbiose [On Symbiosis]. Tageblatt für die Versammlung Dtsch. Naturforscher und Aerzte (in Cassel) [Daily J. Conf. Ger. Sci. Phys.] (in Ger. 51, 121–126 (1878).
Lücking, R., Leavitt, S. D. & Hawksworth, D. L. Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics. Fungal Div.109, 99–154 (Springer, Netherlands, 2021).
de Vries, J. & Archibald, J. M. Plant evolution: Landmarks on the path to terrestrial life. New Phytol. 217, 1428–1434 (2018).
Google Scholar
Ahmadjian, V. The Lichen Symbiosis (John Wiley & Sons, 1993).
Lücking, R., Hodkinson, B. P. & Leavitt, S. D. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota-approaching one thousand genera. Bryologist 119, 361–416 (2016).
Google Scholar
Schneider, K., Resl, P. & Spribille, T. Escape from the cryptic species trap: lichen evolution on both sides of a cyanobacterial acquisition event. Mol. Ecol. 25, 3453–3468 (2016).
Google Scholar
Wedin, M., Döring, H. & Gilenstam, G. Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol. 164, 459–465 (2004).
Google Scholar
Muggia, L., Baloch, E., Stabentheiner, E., Grube, M. & Wedin, M. Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens. FEMS Microbiol. Ecol. 75, 255–272 (2011).
Google Scholar
Sanders, W. B., Moe, R. L. & Ascaso, C. Ultrastructural study of the brown alga Petroderma maculiforme (Phaeophyceae) in the free-living state and in lichen symbiosis with the intertidal marine fungus Verrucaria tavaresiae (Ascomycotina). Eur. J. Phycol. 40, 353–361 (2005).
Google Scholar
Vondrák, J. et al. From Cinderella to Princess. Preslia 94, 143–181 (2022).
Google Scholar
Hawksworth, D. L. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 96, 3–20 (1988).
Google Scholar
Larsson, K. H. & Ryvarden, L. Corticioid fungi of Europe 1. Acanthobasidium–Gyrodontium. Synop. Fungorum 43, 1–266 (2021).
Albertini, J. B., von Schweinitz, L. D. Conspectus fungorum in Lusatiae Superioris agro Niskiensi crescentium, e methodo Persooniana. (DE: Sumtibus Kummerianis, Lipsiae 1805) https://doi.org/10.5962/bhl.title.3601.
Poelt, J. & Jülich, W. Über die Beziehungen zweier corticioider Basidiomyceten zu Algen. Österr. Bot. Zeitschrift 116, 400–410 (1969).
Google Scholar
Voytsekhovich, A., Ordynets, O. & Akimov, Y. Optionally lichenized fungi of Hyphodontia (Agaricomycetes, Schizoporaceae) and their photobiont composition. Aктyaльнi Пpoблeми Бoтaнiки Ta Eкoлoгiї. Maтepiaли Miжнapoднoї Кoнфepeнцiї Moлoдиx Учeниx 65 (2013).
Voytsekhovich, A., Mikhailyuk, T., Akimov, Y., Ordynets, A., Gustavs, L. Optionally lichenized fungi of Hyphodontia (Agaricomycetes, Schizoporaceae). 8th Congress of the International Symbiosis Society, Lisbon, 12–18 July 2015. Lisbon, PT:, 217 (Conf. abstract) (2015).
Gustavs L, Schiefelbein U, Darienko T, P. T. Symbioses of the green algal genera Coccomyxa and Elliptochloris (Trebouxiophyceae, Chlorophyta). in Algal and Cyanobacteria Symbioses (ed. Grube M, Seckbach J) 169–208 (2017).
Darienko, T., Gustavs, L., Eggert, A., Wolf, W. & Pröschold, T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE 10, 1–31 (2015).
Google Scholar
Malavasi, V. et al. DNA-based taxonomy in ecologically versatile microalgae: A re-evaluation of the species concept within the coccoid green algal genus Coccomyxa (Trebouxiophyceae, Chlorophyta). PLoS ONE 11, e0151137 (2016).
Google Scholar
Green, T. G. A., Nash, T. H. Lichen Biology. In Lichen Biology, Second Edition 152–181 (Cambridge University Press, Cambridge, 2008) https://doi.org/10.1017/CBO9780511790478.
Lindgren, H. et al. Cophylogenetic patterns in algal symbionts correlate with repeated symbiont switches during diversification and geographic expansion of lichen-forming fungi in the genus Sticta (Ascomycota, Peltigeraceae). Mol. Phylogenet. Evol. 150, 106860 (2020).
Google Scholar
Kulichová, J., Škaloud, P. & Neustupa, J. Molecular diversity of green corticolous microalgae from two sub-mediterranean European localities. Eur. J. Phycol. 49, 345–355 (2014).
Google Scholar
Pröschold, T. & Darienko, T. The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus. Phytotaxa 441, 113–142 (2020).
Google Scholar
Meier, F. A., Scherrer, S. & Honegger, R. Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont. Trebouxia arboricola. Biol. J. Linn. Soc. 76, 259–268 (2002).
Google Scholar
Bernicchia, A. & Gorjón, S. P. Corticiaceae s.l. 1008 (2010), ISBN: 9788890105791.
Parmasto, E. Descriptiones taxorum novorum. Combinationes novae. Proc. Acad. Sci. Est. SSR. Biol. 16, 377–394 (1967).
Hjortstam, K., Larsson, K., Ryvarden, L. & Eriksson, J. The Corticiaceae of North Europe. (Oslo: Fungiflora, 1988).
Jaag, O. Coccomyxa schmidle Monographie einer algengattung. Beitr. Kryptogamenflora Schweiz 8, 1–132 (1933).
Oberwinkler, F. Die gattungen der Basidiolichenen. Vorträge aus dem Gesamtgebiet der Botanik. Herausgegeb. v. d. Deutsch. bot. Ges. Neue Folge 4, 139–169 (1970).
Poelt, J. Basidienflechten, eine in den Alpen lange übersehene Pflanzengruppe. Jahrb. Vereins Schutze Alpenpfl. Tiere 40, 81–92 (1975).
Eriksson, J., Hjortstam, K. The Corticiaceae of North Europe. Vol. 6. (Grønlands Eskefabrikk, 1981).
Oberwinkler, F. Basidiolichens. In Fungal Association 211–225 (Springer, Berlin Heidelberg, Berlin, 2001). https://doi.org/10.1007/978-3-662-07334-6_12.
Google Scholar
Jülich, W. A new lichenized Athelia from Florida. Persoonia 10, 149–151 (1978).
Zavada, M. S. & Simoes, P. The possible demi-lichenization of the basidiocarps of Trametes Versicolor (L.:Fries) pilat (polyporaceae). Northeast. Nat. 8, 101–112 (2001).
Neustroeva, N., Mukhin, V., Novakovskaya, I. & Patova, E. Biodiversity of symbiotic algae of wood decay Basidimycetes in the Central Urals. III Russ. Natl. Conf. “Information Technol. Biodivers. Res. 1, 83–92 (2020).
Zavada, M. S., DiMichele, L. & Toth, C. R. The possible demi-lichenization of Trametes versicolor (L.: Fries) Pilát (Polyporaceae): The transfer of fixed 14CO2 from epiphytic algae to T. versicolor. Northeast. Nat. 11, 33–40 (2004).
Google Scholar
Mukhin, V. A., Patova, E. N., Kiseleva, I. S., Neustroeva, N. V. & Novakovskaya, I. V. Mycetobiont symbiotic algae of wood-decomposing fungi. Russ. J. Ecol. 47, 133–137 (2016).
Google Scholar
Sanders, W. B. & Masumoto, H. Lichen algae: The photosynthetic partners in lichen symbioses. Lichenologist 53, 347–393 (2021).
Google Scholar
Krause, G. & Weis, E. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Biol. 42(1), 313–349 (1991).
Google Scholar
Lüttge, U. & Büdel, B. Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol. 12, 437–444 (2010).
Google Scholar
Lange, O. L. Moisture content and CO2 exchange of lichens: I. Influence of temperature on moisture-dependent net photosynthesis and dark respiration in Ramalina maciformis. Oecologia 45, 82–87 (1980).
Google Scholar
Palmqvist, K. & Sundberg, B. Light use efficiency of dry matter gain in five macrolichens: Relative impact of microclimate conditions and species-specific traits. Plant Cell Environ. 23, 1–14 (2000).
Google Scholar
Vondrak, J. & Kubásek, J. Algal stacks and fungal stacks as adaptations to high light in lichens. Lichenol. 45(1), 115 (2013).
Google Scholar
Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: Incorporating acclimation to temperature and CO2. Glob. Chang. Biol. 19, 45–63 (2013).
Google Scholar
Medeiros, P. M. & Simoneit, B. R. T. Analysis of sugars in environmental samples by gas chromatography-mass spectrometry. J. Chromatogr. A 1141, 271–278 (2007).
Google Scholar
Honegger, R. Functional aspects of the lichen symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 553–578 (1991).
Google Scholar
Honegger, R. The lichen symbiosis—What is so spectacular about it?. Lichenologist 30, 193–212 (1998).
Google Scholar
Kirk, P. M. et al. (eds) Dictionary of the Fungi 10th edn. (CABI, Netherlands, 2008).
Ahmadjian, V. The lichen alga Trebouxia: Does it occur free-living?. Plant Syst. Evol. 158, 243–247 (1988).
Google Scholar
Sanders, W. B. Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: Propagule dispersal, establishment of symbiosis, thallus development, and formation of sexual and asexual reproductive structures. Am. J. Bot. 101, 1836–1848 (2014).
Google Scholar
Rindi, F. & Guiry, M. Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43, 225–235 (2004).
Google Scholar
Stonyeva, M. P., Uzunov, B. A. & Gärtner, G. Aerophytic green algae, epimycotic on Fomes fomentarius (L. ex Fr.) Kickx. Annu. Sofia Univ “St. Kliment Ohridski”. Fac. Biol. 99, 19–25 (2015).
Aras, S. & Cansaran, D. Isolation of DNA for sequence analysis from herbarium material of some lichen specimens. Turk. J. Bot. 30, 449–453 (2006).
Hall, T. BioEdit: A userfriendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Google Scholar
Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).
Google Scholar
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).
Google Scholar
Vondrák, J. & Kubásek, J. Algal stacks and fungal stacks as adaptations to high light in lichens. Lichenol. 45, 115–124 (2013).
Google Scholar
Kubásek, J., Hájek, T. & Glime, J. M. Bryophyte photosynthesis in sunflecks: Greater relative induction rate than in tracheophytes. J. Bryol. 36, 110–117 (2014).
Google Scholar
Kubásek, J. et al. Moss stomata do not respond to light and CO2 concentration but facilitate carbon uptake by sporophytes: A gas exchange, stomatal aperture, and C-13-labelling study. New Phytol. 230, 1815–1828 (2021).
Google Scholar
Feige, G. & Kremer, B. Unusual carbohydrate pattern in Trentepohlia species. Phytochemistry 19, 1844–1845 (1980).
Google Scholar
Tonon, T., Li, Y. & McQueen-Mason, S. Mannitol biosynthesis in algae: More widespread and diverse than previously thought. New Phytol. 213, 1573–1579 (2017).
Google Scholar
Gustavs, L., Görs, M. & Karsten, U. Polyol patterns in biofilm-forming aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta). J. Phycol. 47, 533–537 (2011).
Google Scholar
Source: Ecology - nature.com