Campbell, J. L. & Laudon, H. Carbon response to changing winter conditions in northern regions: current understanding and emerging research needs. Environ. Rev. 27, 545–566 (2019).
Google Scholar
Groffman, P. M. et al. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry 56, 191–213 (2001).
Google Scholar
Song, C. et al. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environ. Res. Lett. 7, 034009 (2012).
Google Scholar
Chen, H. et al. Methane emissions during different freezing-thawing periods from a fen on the Qinghai-Tibetan Plateau: Four years of measurements. Agric. Ecosyst. Environ. 297, 108279 (2021).
Bao, T., Xu, X., Jia, G., Billesbach, D. P. & Sullivan, R. C. Much stronger tundra methane emissions during autumn freeze than spring thaw. Glob. Chang. Biol. 27, 376–387 (2021).
Google Scholar
Yu, J. et al. Enhanced net formations of nitrous oxide and methane underneath the frozen soil in Sanjiang wetland, northeastern China. J. Geophys. Res 112, D07111 (2007).
Google Scholar
Kreyling, J., Peršoh, D., Werner, S., Benzenberg, M. & Wöllecke, J. Short-term impacts of soil freeze-thaw cycles on roots and root-associated fungi of Holcus lanatus and Calluna vulgaris. Plant Soil 353, 19–31 (2012).
Google Scholar
Min, K., Chen, K. & Arora, R. Effect of short-term versus prolonged freezing on freeze–thaw injury and post-thaw recovery in spinach: Importance in laboratory freeze–thaw protocols. Environ. Exp. Bot. 106, 124–131 (2014).
Google Scholar
Kennedy, A. Photosynthetic response of the Antarctic moss Polytrichum alpestre Hoppe to low temperatures and freeze-thaw stress. Polar Biol. 13, 271–279 (1993).
Google Scholar
Sanders-DeMott, R., Sorensen, P. O., Reinmann, A. B. & Templer, P. H. Growing season warming and winter freeze–thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem. Biogeochemistry 137, 337–349 (2018).
Google Scholar
Vankoughnett, M. R. & Henry, H. A. L. Soil freezing and N deposition: transient vs. multi-year effects on extractable C and N, potential trace gas losses and microbial biomass. Soil Biol. Biochem. 77, 170–178 (2014).
Google Scholar
Kreyling, J., Beierkuhnlein, C., Pritsch, K., Schloter, M. & Jentsch, A. Recurrent soil freeze-thaw cycles enhance grassland productivity. New Phytol. 177, 938–945 (2008).
Google Scholar
Song, Y., Zou, Y., Wang, G. & Yu, X. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: a meta-analysis. Soil Biol. Biochem. 109, 35–49 (2017).
Google Scholar
Vankoughnett, M. R. & Henry, H. A. L. Soil freezing and N deposition: transient vs multi-year effects on plant productivity and relative species abundance. New Phytol. 202, 1277–1285 (2014).
Google Scholar
Luan, Z. & Cao, H. Response of fine root growth and nitrogen and phosphorus contents to soil freezing in Calamagrostis angustifolia wetland, Sanjiang Plain, Northeast China. J. Food Agric. Environ. 10, 1495–1499 (2012).
Garcia, M. O. et al. Soil microbes trade-off biogeochemical cycling for stress tolerance traits in response to year-round climate change. Front. Microbiol. 11, 616 (2020).
Google Scholar
Tang, H., Bai, J., Chen, F., Liu, Y. & Lou, Y. Effects of salinity and temperature on tuber sprouting and growth of Schoenoplectus nipponicus. Ecosphere 12, e03448 (2021).
Google Scholar
Satyanti, A., Guja, L. K. & Nicotra, A. B. Temperature variability drives within-species variation in germination strategy and establishment characteristics of an alpine herb. Oecologia 189, 407–419 (2019).
Google Scholar
Harrison, J. L., Schultz, K., Blagden, M., Sanders-DeMott, R. & Templer, P. H. Growing season soil warming may counteract trend of nitrogen oligotrophication in a northern hardwood forest. Biogeochemistry 151, 139–152 (2020).
Google Scholar
Semenchuk, P. R. et al. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra. Biogeochemistry 124, 81–94 (2015).
Google Scholar
Song, Y., Zou, Y., Wang, G. & Yu, X. Stimulation of nitrogen turnover due to nutrients release from aggregates affected by freeze-thaw in wetland soils. Phys. Chem. Earth 97, 3–11 (2017).
Google Scholar
Keith, D. A., Rodoreda, S. & Bedward, M. Decadal change in wetland-woodland boundaries during the late 20th century reflects climatic trends. Glob. Chang. Biol. 16, 2300–2306 (2010).
Google Scholar
Wang, J., Song, C., Hou, A. & Xi, F. Methane emission potential from freshwater marsh soils of Northeast China: response to simulated freezing-thawing cycles. Wetlands 37, 437–445 (2017).
Google Scholar
Yu, X. et al. Wetland plant litter decomposition occurring during the freeze season under disparate flooded conditions. Sci. Total Environ. 706, 136091 (2020).
Google Scholar
Dong, X. et al. Variations in active layer soil hydrothermal dynamics of typical wetlands in permafrost region in the Great Hing’an Mountains, northeast China. Ecol. Indic. 129, 107880 (2021).
Google Scholar
Li, Y. et al. Freeze-thaw cycles increase the mobility of phosphorus fractions based on soil aggregate in restored wetlands. CATENA 209, 105846 (2022).
Google Scholar
Song, C., Zhang, J., Wang, Y., Wang, Y. & Zhao, Z. Emission of CO2, CH4 and N2O from freshwater marsh in northeast of China. J. Environ. Manage. 88, 428–436 (2008).
Google Scholar
Wang, G., Liu, J., Zhao, H., Wang, J. & Yu, J. Phosphorus sorption by freeze–thaw treated wetland soils derived from a winter-cold zone (Sanjiang Plain, Northeast China). Geoderma 138, 153–161 (2007).
Google Scholar
Ji, X., Liu, M., Yang, J. & Feng, F. Meta-analysis of the impact of freeze–thaw cycles on soil microbial diversity and C and N dynamics. Soil Biol. Biochem. 168, 108608 (2022).
Google Scholar
Ren, J. et al. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. Sci. Total. Environ. 625, 782–791 (2018).
Google Scholar
Mitsch, W. J. & Gosselink, J. G. Wetlands. 5th edn (Wiley, Hoboken, New Jersey, 2015).
Yu, X., Zou, Y., Jiang, M., Lu, X. & Wang, G. Response of soil constituents to freeze–thaw cycles in wetland soil solution. Soil Biol. Biochem. 43, 1308–1320 (2011).
Google Scholar
Sawicka, J. E., Robador, A., Hubert, C., Jørgensen, B. B. & Bruchert, V. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat. ISME J 4, 585–594 (2010).
Google Scholar
Song, Y. The Freeze-thaw Effect On Soil Mineralization Between Various Moisture States Of Wetlands. Master of Natural Science thesis (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2017).
Mason, R. E. et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376, eabh3767 (2022).
Google Scholar
Koerselman, W. & Meuleman, A. F. M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).
Google Scholar
Yang, K. et al. Immediate and carry-over effects of increased soil frost on soil respiration and microbial activity in a spruce forest. Soil Biol. Biochem. 135, 51–59 (2019).
Google Scholar
Lambers, H., Chapin, F. S. I. & Pons, T. L. Plant Physiological Ecology. 2nd edn (Springer, 2008).
Ott, J. P., Klimešová, J. & Hartnett, D. C. The ecology and significance of below-ground bud banks in plants. Ann. Bot. 123, 1099–1118 (2019).
Google Scholar
Pedersen, E. P., Elberling, B. & Michelsen, A. Foraging deeply: depth‐specific plant nitrogen uptake in response to climate‐induced N‐release and permafrost thaw in the High Arctic. Glob. Chang. Biol. 26, 6523–6536 (2020).
Google Scholar
Dyer, A.R. Maternal and sibling factors induce dormancy in dimorphic seed pairs of Aegilops triuncialis. Plant Ecol. 172, 211–218 (2004).
Google Scholar
Renne, I. J. et al. Eavesdropping in plants: delayed germination via biochemical recognition. J. Ecol. 102, 86–94 (2014).
Google Scholar
Li, H. Eco-physiological Responding Characteristics of Scirpus Planiculmis on Coupling of Water Table Depths and Salinity in Momoge Wetland. Master Dissertation thesis, University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2013).
Yu, D. Responses of Sprouting and Growth to Environmental Factors in Bolboschoenus Planiculmis. Master Dissertation thesis (Harbin Normal University, 2022).
Zhang, C., Willis, C. G., Donohue, K., Ma, Z. & Du, G. Effects of environment, life-history and phylogeny on germination strategy of 789 angiosperms species on the eastern Tibetan Plateau. Ecol. Indic. 129, 107974 (2021).
Google Scholar
Hoyle, G. L. et al. Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits. Front. Plant Sci. 6, 731 (2015).
Google Scholar
Mercer, K. L., Alexander, H. M. & Snow, A. A. Selection on seedling emergence timing and size in an annual plant, Helianthus annuus (common sunflower, Asteraceae). Am. J. Bot. 98, 975–985 (2011).
Google Scholar
Cui, Y. et al. Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems. Soil Tillage. Res. 197, 104463 (2020).
Google Scholar
Ye, Z. et al. Ecoenzymatic stoichiometry reflects the regulation of microbial carbon and nitrogen limitation on soil nitrogen cycling potential in arid agriculture ecosystems. J. Soils Sediments 22, 1228–1241 (2022).
Google Scholar
Pan, Y. et al. Drivers of plant traits that allow survival in wetlands. Funct. Ecol. 34, 956–967 (2020).
Google Scholar
Pezeshki, S. R. Wetland plant responses to soil flooding. Environ. Exp. Bot. 46, 299–312 (2001).
Google Scholar
Zheng, S. Soil Water-heat Process and Nitrogen Transformation During Freezing and Thawing Period in Wetland of Momoge. Master Dissertation thesis (Jilin Agricultural University, 2019).
An, Y., Gao, Y., Zhang, Y., Tong, S. & Liu, X. Early establishment of Suaeda salsa population as affected by soil moisture and salinity: implications for pioneer species introduction in saline-sodic wetlands in Songnen Plain, China. Ecol. Indic. 107, 105654 (2019).
Google Scholar
FAO/IIASA/ISRIC/ISS-CAS/JRC. Harmonized World Soil Database (version 1.2). (FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2012).
Jiang, M., Lu, X., Xu, L. & Yang, Q. Estimation on benefit of latent soil nutrient in melmeg reserve wetlands. J. Nat. Resour 20, 279–285 (2005).
Wang, Y. & Zhang, S. The pH distribution and soil nutrient characteristic at different habitats-a case study of Momoge Wetland. J. Anhui Agric. Sci. 50, 135–139 (2022).
Hao, M. The Ecological Restoration Research on Momoge Scripus Planiculmis Wetland. Master Dissertation thesis, University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2016).
Ma, H. et al. Effect of nitrate supply on the facilitation between two salt-marsh plants (Suaeda salsa and Scirpus planiculmis). J. Plant. Ecol. 13, 204–212 (2020).
Google Scholar
Liu, B. et al. Effects of burial depth and water depth on seedling emergence and early growth of Scirpus planiculmis Fr. Schmidt. Ecol. Eng. 87, 30–33 (2016).
Google Scholar
Zhang, L., Zhang, G., Li, H. & Sun, G. Eco-physiological responses of Scirpus planiculmis to different water-salt conditions in Momoge wetland. Pol. J. Environ. Stud. 23, 1813–1820 (2014).
Sosnová, M., van Diggelen, R. & Klimešová, J. Distribution of clonal growth forms in wetlands. Aquat. Bot. 92, 33–39 (2010).
Google Scholar
Lu, R. Analytical Methods of Soil Agrochemistry (China Agricultural Science and Technology Press, 2000).
Bao, S. Soil and Agricultural Chemistry Analysis. 3 edn. (China Agriculture Press, 2000).
Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).
Google Scholar
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
Google Scholar
Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
Google Scholar
Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).
Google Scholar
Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132 (2010).
Google Scholar
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
Google Scholar
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).
Google Scholar
Lauro, F. M. et al. An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5, 879–895 (2011).
Google Scholar
Shen, M. et al. Trophic status is associated with community structure and metabolic potential of planktonic microbiota in Plateau lakes. Front. Microbiol. 10, 2560 (2019).
Google Scholar
Kieft, B. et al. Microbial community structure-function relationships in Yaquina Bay estuary reveal spatially distinct carbon and nitrogen cycling capacities. Front. Microbiol. 9, 1282 (2018).
Google Scholar
Kay, M. Effect Sizes with ART (2021).
Mangiafico, S. S. Summary and Analysis of Extension Program Evaluation in R, version 1.18.8 https://rcompanion.org/handbook/ (2016).
R Core Team R: A Language and Environment for Statistical Computing (2020).
Fox, J. & Weisberg, S. An R Companion to Applied Regression. 3rd edn (Thousand Oaks, Sage, CA, 2019).
Kay, M., Elkin, L. A., Higgins, J. J. & Wobbrock, J. O. ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. R package version 0.11.1. https://doi.org/10.5281/zenodo.594511 (2021).
Wobbrock, J. O., Findlate, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only anova procedures. 29th Annual Chi Conference on Human Factors in Computing Systems (CHI 2011), p. 143-146. https://doi.org/10.1145/1978942.1978963 (2011).
Elkin, L. A., Kay, M., Higgins, J. J. & Wobbrock, J. O. An aligned rank transform procedure for multifactor contrast Tests. Proceedings of the ACM Symposium on User Interface Software and Technology (UIST 2021), p. 754-768. https://doi.org/10.1145/3472749.3474784 (2021).
Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.3. (2021).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (2016).
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020).
Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research, Northwestern University, Evanston, Illinois, USA, R package version 2.2.9 (2022).
Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a Correlation Matrix (Version 0.90) (2021).
Source: Ecology - nature.com