in

Comparable biophysical and biogeochemical feedbacks on warming from tropical moist forest degradation

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article 

    Google Scholar 

  • Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article 

    Google Scholar 

  • Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).

    Article 

    Google Scholar 

  • Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

    Article 

    Google Scholar 

  • Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850-2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).

    Article 

    Google Scholar 

  • Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    Article 

    Google Scholar 

  • Longo, M. et al. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Glob. Biogeochem. Cycles 30, 1639–1660 (2016).

    Article 

    Google Scholar 

  • Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).

    Article 

    Google Scholar 

  • Smith, I. A., Hutyra, L. R., Reinmann, A. B., Marrs, J. K. & Thompson, J. R. Piecing together the fragments: elucidating edge effects on forest carbon dynamics. Front. Ecol. Environ. 16, 213–221 (2018).

    Article 

    Google Scholar 

  • Franklin, C. M. A., Harper, K. A. & Clarke, M. J. Trends in studies of edge influence on vegetation at human-created and natural forest edges across time and space. Can. J. For. Res. 51, 274–282 (2020).

    Article 

    Google Scholar 

  • Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).

    Article 

    Google Scholar 

  • Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).

    Article 

    Google Scholar 

  • Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    Article 

    Google Scholar 

  • Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).

    Article 

    Google Scholar 

  • Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).

    Article 

    Google Scholar 

  • Schoene, D., Killmann, W., Lüpke, H. V. & LoycheWilkie, M. Forests and Climate Change Working Paper 5: Definitional Issues Related to Reducing Emissions from Deforestation in Developing Countries (FAO, 2007).

  • Goetz, S. J. et al. Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environ. Res. Lett. 10, 123001 (2015).

    Article 

    Google Scholar 

  • Pearson, T. R. H., Brown, S., Murray, L. & Sidman, G. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. 12, 3 (2017).

    Article 

    Google Scholar 

  • Cadenasso, M. L., Traynor, M. M. & Pickett, S. T. Functional location of forest edges: gradients of multiple physical factors. Can. J. For. Res. 27, 774–782 (1997).

    Article 

    Google Scholar 

  • Schmidt, M., Jochheim, H., Kersebaum, K.-C., Lischeid, G. & Nendel, C. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes – a review. Agric. For. Meteorol. 232, 659–671 (2017).

    Article 

    Google Scholar 

  • Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article 

    Google Scholar 

  • Silva Junior, C. H. L. et al. Amazonian forest degradation must be incorporated into the COP26 agenda. Nat. Geosci. 14, 634–635 (2021).

    Article 

    Google Scholar 

  • Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).

    Article 

    Google Scholar 

  • Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).

    Article 

    Google Scholar 

  • Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data 13, 3927–3950 (2021).

    Article 

    Google Scholar 

  • Chuvieco, E. et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 10, 2015–2031 (2018).

    Article 

    Google Scholar 

  • Zhao, Z. et al. Fire enhances forest degradation within forest edge zones in Africa. Nat. Geosci. https://doi.org/10.1038/s41561-021-00763-8 (2021).

  • Cook, M., Schott, J. R., Mandel, J. & Raqueno, N. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive. Remote Sens. https://doi.org/10.3390/rs61111244 (2014).

  • Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).

    Article 

    Google Scholar 

  • Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).

    Article 

    Google Scholar 

  • Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).

    Article 

    Google Scholar 

  • Silva Junior, C. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).

    Article 

    Google Scholar 

  • Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997).

    Article 

    Google Scholar 

  • Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).

    Article 

    Google Scholar 

  • Zheng, C., Jia, L. & Hu, G. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite Earth observations. J. Hydrol. 613, 128444 (2022).

    Article 

    Google Scholar 

  • Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).

    Article 

    Google Scholar 

  • Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).

    Article 

    Google Scholar 

  • de Paula, M. D., Costa, C. P. A. & Tabarelli, M. Carbon storage in a fragmented landscape of Atlantic forest: the role played by edge-affected habitats and emergent trees. Trop. Conserv. Sci. 4, 349–358 (2011).

    Article 

    Google Scholar 

  • van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article 

    Google Scholar 

  • Gillett, N. P., Arora, V. K., Matthews, D. & Allen, M. R. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Clim. 26, 6844–6858 (2013).

    Article 

    Google Scholar 

  • Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article 

    Google Scholar 

  • Kozlowski, T. T. Responses of woody plants to flooding and salinity. Tree Physiol. 17, 490–490 (1997).

    Article 

    Google Scholar 

  • Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).

    Article 

    Google Scholar 

  • Sze, J. S., Carrasco, L. R., Childs, D. & Edwards, D. P. Reduced deforestation and degradation in Indigenous lands pan-tropically. Nat. Sustain. 5, 123–130 (2022).

    Article 

    Google Scholar 

  • Masson-Delmotte, V. et al. IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds) (Cambridge Univ. Press, 2021).

  • Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-Ground Biomass for the Years 2010, 2017 and 2018, v3 (NERC EDS Centre for Environmental Data Analysis, 2021); https://doi.org/10.5285/5f331c418e9f4935b8eb1b836f8a91b8

  • Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).

    Article 

    Google Scholar 

  • Alkama, R. et al. Vegetation-based climate mitigation in a warmer and greener world. Nat. Commun. 13, 606 (2022).

    Article 

    Google Scholar 

  • Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).

    Article 

    Google Scholar 

  • Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Article 

    Google Scholar 

  • Li, W. et al. Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences 14, 5053–5067 (2017).

    Article 

    Google Scholar 

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Coastal algal blooms have intensified over the past 20 years

    Integrating humans with AI in structural design